r-GO/MWCNTs Nanocomposite Film as Electrode Material for Supercapacitor

Article Preview

Abstract:

We synthesized a reduced graphene oxide (r-GO) multi-walled carbon nanotube (MWCNTs) nanocomposite film via layer by layer (LBL) assembly. This structure was prepared by vacuum filtration and heat-treated at a low temperature of 500°C. The morphology of the sample was determined by field emission electron spectroscopy (FE-SEM). The structural detail and the chemical analysis were characterized by using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The cyclic voltammetry (CV) curve of r-GO/MWCNTs nanocomposite appeared nearly rectangular in shape. The current density (A/g) was gradually increased by increasing the scan rate of the voltage, as high as a scan rate of 500 mVs-1. At a current density of 10 mAg-1, the specific capacitance of the nanocomposite, estimated by galvanostatic (GA) charge/discharge measurement, is 150 Fg-1. These nanocomposites can be developed for supercapacitor electrodes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

425-430

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. K. Geim and K. S. Novoselov, The rise of graphene, Nature materials, 6, (2007), 183-191.

Google Scholar

[2] S. Park and R. S. Ruoff, Chemical methods for the production of graphenes, nature nanotechnology, 4, (2009), 217-224.

Google Scholar

[3] F. Liu, S. Song, D. Xue, H. Zhang, Folded structured graphene paper for high performance electrode materials, 24, (2012), 1089-1094.

DOI: 10.1002/adma.201104691

Google Scholar

[4] S. Noothongkaew, S. Pukird, Ki-Seok An, Synthesis of zinc oxide nanowire-nanowall-like hybrid structures on graphene, Integrated Ferroelectrics, (2015), 165: 146–152.

DOI: 10.1080/10584587.2015.1063919

Google Scholar

[5] M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Graphene-Based Ultracapacitors, Nano. Lett. 8 (2008), 3498-3502.

DOI: 10.1021/nl802558y

Google Scholar

[6] S. Stankovich, D. A. Dikin, G. H. G. Dommett, K. M. Kohlhass, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, Graphene-based composite materials, Nature, 442, (2006), 282-286.

DOI: 10.1038/nature04969

Google Scholar

[7] A. K. Geim and P. Kim, Graphene Sheets with Modified Surface by Sodium Lauryl Sulfate Surfactant for Biomedical Applications Sci. Am., 298, (2008), 90-97.

Google Scholar

[8] L. Shahriary, H. Ghourchian, A. A. Athawale., Graphene-Multiwalled Carbon Nanotube Hybrids Synthesized by Gamma Radiations: Application as a Glucose Sensor, J. of Nanotechnology, (2014), 1-10.

DOI: 10.1155/2014/903872

Google Scholar

[9] Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, Lu-C. Qin, Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density, Phys. Chem, Chem. Phys., 13, (2011), 17615-17624.

DOI: 10.1039/c1cp21910c

Google Scholar

[10] A. Yu, I. Roes, A. Davies and Z. Chen, Ultrathin, transparent, and flexible graphene films for supercapacitor application, Appl. Phys. Lett. 96 (2010), 253105.

DOI: 10.1063/1.3455879

Google Scholar

[11] X. Lu, H. Dou, S. Yang, L. Hao, L. Zhang, L. Shen, F. Zhang, X. Zhang., Fabrication and electrochemical capacitance of hierarchical graphene/polyaniline/carbon nanotube ternary composite film, Electrochimical Acta, 56 (2011), 9224-9232.

DOI: 10.1016/j.electacta.2011.07.142

Google Scholar

[12] Dingshan yu and Liming Dai, Self-Assembled Graphene/Carbon Nanotube Hybrid Films for supercapacitors, J. of Physical Chemistry Letters, 1 (2010), 467-470.

DOI: 10.1021/jz9003137

Google Scholar

[13] L. David, R. Bhandavat, G. Singh, MoS2/Graphene composite paper for Sodium-Ion Battery Electrodes, 8, (2014), 1759-1770.

DOI: 10.1021/nn406156b

Google Scholar

[14] W. Yang, Y. Dai, S. Cai, W. Wen, K. Wang, Graphene/Au composite paper as flexible current collector to improve electrochemical performances of CFx cathode, 255, (2014), 37-42.

DOI: 10.1016/j.jpowsour.2013.12.122

Google Scholar

[15] J. K. Lee, K. B. Smith, C. M. Hayner, H. H. Kung, Silicon Nanoparticles- Graphene paper composites for Li Ion Battery Anodes, The Royal Society of Chemistry, (2010), S1-S15.

DOI: 10.1039/b919738a

Google Scholar

[16] T. K. Hong, D. W. Lee, H. J. Choi, H. S. Shin, Transparent, Flexible Conducting hybrid multilayer thin films of multiwalled carbon nanotubes with graphene nanosheets, 4, (2010), 3861-3868.

DOI: 10.1021/nn100897g

Google Scholar

[17] F. T. Lopez, A. M. Gomez, S. M. Diaz, M. L. Betancourt, Large Area films of alternating graphene carbon nanotube layers processed in water, 7, (2013), 10788-10798.

Google Scholar

[18] X. Li, W. Cai, J. An, S. Kin, J. Nah, D. Yang, Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science, 324, (2009), 1312.

DOI: 10.1126/science.1171245

Google Scholar

[19] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, Large-scale pattern growth of grapheme films for stretchable transparent electrodes, 457, (2009), 706-710.

DOI: 10.1038/nature07719

Google Scholar

[20] G. Xin, H. Sun, T. Hu, X. Sun, Large-Area Freestanding Graphene Paper for Superior Thermal Management, Advanced Materials, (2014).

DOI: 10.1002/adma.201400951

Google Scholar

[21] D. H. Lee, J. E. Kim, T. H. Han, J. W. Hwang, Versatile Carbon Hybrid Films Composed of Vertical Carbon Nanotubes Grown on Mechanically Compliant Graphene Films, 22, (2010), 1247-1252.

DOI: 10.1002/adma.200903063

Google Scholar

[22] D. Frederico, R. Rurali, P. Ordejon, Electronic Transport between Graphene Layers Covalently Connected by Carbon Nanotubes, ACS. Nano, 4, (2010), 7596-7602.

DOI: 10.1021/nn102206n

Google Scholar

[23] A. R. Ranjbartoreh, B. Wang, X. Shen, G. Wang, Advanced mechanical properties of graphene paper, J. of Applied Physics 109, (2011), 014306.

DOI: 10.1063/1.3528213

Google Scholar

[24] Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, A Three-Dimensional Carbon Nanotube/GrapheneSandwich and Its Application as Electrode in Supercapacitors, Adv Mater, 22, (2010), 3723-3728.

DOI: 10.1002/adma.201001029

Google Scholar

[25] H. P. Cong, X. C. Ren, P. Wang, S. H. Yu, Flexible graphene polyniline composite paper for high performance supercapacitor, Energy Environ. Sci. 6, (2013), 1185-1191.

DOI: 10.1039/c2ee24203f

Google Scholar

[26] Y. Su. Kim, K. Kumar, F. T. Fisher, and E. H. Yang, Out of plane growth of CNTs on graphene for supercapacitor applications, Nanotechnolygy 23 (2012), 015301-015307.

DOI: 10.1088/0957-4484/23/1/015301

Google Scholar

[27] Z. Y. Yang, Y. F. Zhao, Q. Q. Xiao, Y. Xia, Zhang, L. Jing, Y. M. Yan, K. N. Sun, Controllable Growth of CNTs on Graphene as high-performance electrode material for supercapacitors, Appl. Mater. Interfaces, 6 (2014), 8497-8504.

DOI: 10.1021/am501362g

Google Scholar

[28] D. D. H. Lee, E. J. Kim, H. T. Han, Versatile Carbon Hybrid Films Composed of Vertical Carbon Nanotubes Grown on Mechanically Compliant Graphene Films, Adv. Mater. 22, (2010), 1247-1252.

DOI: 10.1002/adma.200903063

Google Scholar

[29] D. Yu, L. Dai, Self-Assembled Graphene/Carbon Nanotube Hybrid films for supercapacitors, 1, (2010), 467-470.

Google Scholar

[30] D. Sun, X. Yan, J. Lang, Q. Xue, High performance supercapacitor electrode based on grapheme paper via flame-induced reduction of grapheme oxide paper, J. of Power Source, 222, (2013), 52-58.

DOI: 10.1016/j.jpowsour.2012.08.059

Google Scholar

[31] Z. Yan, Z. Peng, G. Casillas, J. Lin, Rebar Graphene, J. ACS. Nano 8, (2014), 5061-5068.

Google Scholar

[32] J. Yan, T. Wei, Z. Fan, W. Qian, Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors, J. of Power Sources 195, (2010), 3041-3045.

DOI: 10.1016/j.jpowsour.2009.11.028

Google Scholar

[33] Y. Su. Kim, K. Kumar, F. T. Fisher, E. H. Yang, Out of plane growth of CNTs on graphene for supercapacitor applications, 23 (2012), 015301.

DOI: 10.1088/0957-4484/23/1/015301

Google Scholar

[34] D. Sun, X. Yan, J. Lang, Q. Xue, High performance supercapacitor electrode based on grapheme paper via flame-induced reduction of grapheme oxide paper, J. of Power Source, 222, (2013), 52-58.

DOI: 10.1016/j.jpowsour.2012.08.059

Google Scholar