[1]
A. K. Geim and K. S. Novoselov, The rise of graphene, Nature materials, 6, (2007), 183-191.
Google Scholar
[2]
S. Park and R. S. Ruoff, Chemical methods for the production of graphenes, nature nanotechnology, 4, (2009), 217-224.
Google Scholar
[3]
F. Liu, S. Song, D. Xue, H. Zhang, Folded structured graphene paper for high performance electrode materials, 24, (2012), 1089-1094.
DOI: 10.1002/adma.201104691
Google Scholar
[4]
S. Noothongkaew, S. Pukird, Ki-Seok An, Synthesis of zinc oxide nanowire-nanowall-like hybrid structures on graphene, Integrated Ferroelectrics, (2015), 165: 146–152.
DOI: 10.1080/10584587.2015.1063919
Google Scholar
[5]
M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Graphene-Based Ultracapacitors, Nano. Lett. 8 (2008), 3498-3502.
DOI: 10.1021/nl802558y
Google Scholar
[6]
S. Stankovich, D. A. Dikin, G. H. G. Dommett, K. M. Kohlhass, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, Graphene-based composite materials, Nature, 442, (2006), 282-286.
DOI: 10.1038/nature04969
Google Scholar
[7]
A. K. Geim and P. Kim, Graphene Sheets with Modified Surface by Sodium Lauryl Sulfate Surfactant for Biomedical Applications Sci. Am., 298, (2008), 90-97.
Google Scholar
[8]
L. Shahriary, H. Ghourchian, A. A. Athawale., Graphene-Multiwalled Carbon Nanotube Hybrids Synthesized by Gamma Radiations: Application as a Glucose Sensor, J. of Nanotechnology, (2014), 1-10.
DOI: 10.1155/2014/903872
Google Scholar
[9]
Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, Lu-C. Qin, Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density, Phys. Chem, Chem. Phys., 13, (2011), 17615-17624.
DOI: 10.1039/c1cp21910c
Google Scholar
[10]
A. Yu, I. Roes, A. Davies and Z. Chen, Ultrathin, transparent, and flexible graphene films for supercapacitor application, Appl. Phys. Lett. 96 (2010), 253105.
DOI: 10.1063/1.3455879
Google Scholar
[11]
X. Lu, H. Dou, S. Yang, L. Hao, L. Zhang, L. Shen, F. Zhang, X. Zhang., Fabrication and electrochemical capacitance of hierarchical graphene/polyaniline/carbon nanotube ternary composite film, Electrochimical Acta, 56 (2011), 9224-9232.
DOI: 10.1016/j.electacta.2011.07.142
Google Scholar
[12]
Dingshan yu and Liming Dai, Self-Assembled Graphene/Carbon Nanotube Hybrid Films for supercapacitors, J. of Physical Chemistry Letters, 1 (2010), 467-470.
DOI: 10.1021/jz9003137
Google Scholar
[13]
L. David, R. Bhandavat, G. Singh, MoS2/Graphene composite paper for Sodium-Ion Battery Electrodes, 8, (2014), 1759-1770.
DOI: 10.1021/nn406156b
Google Scholar
[14]
W. Yang, Y. Dai, S. Cai, W. Wen, K. Wang, Graphene/Au composite paper as flexible current collector to improve electrochemical performances of CFx cathode, 255, (2014), 37-42.
DOI: 10.1016/j.jpowsour.2013.12.122
Google Scholar
[15]
J. K. Lee, K. B. Smith, C. M. Hayner, H. H. Kung, Silicon Nanoparticles- Graphene paper composites for Li Ion Battery Anodes, The Royal Society of Chemistry, (2010), S1-S15.
DOI: 10.1039/b919738a
Google Scholar
[16]
T. K. Hong, D. W. Lee, H. J. Choi, H. S. Shin, Transparent, Flexible Conducting hybrid multilayer thin films of multiwalled carbon nanotubes with graphene nanosheets, 4, (2010), 3861-3868.
DOI: 10.1021/nn100897g
Google Scholar
[17]
F. T. Lopez, A. M. Gomez, S. M. Diaz, M. L. Betancourt, Large Area films of alternating graphene carbon nanotube layers processed in water, 7, (2013), 10788-10798.
Google Scholar
[18]
X. Li, W. Cai, J. An, S. Kin, J. Nah, D. Yang, Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science, 324, (2009), 1312.
DOI: 10.1126/science.1171245
Google Scholar
[19]
K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, Large-scale pattern growth of grapheme films for stretchable transparent electrodes, 457, (2009), 706-710.
DOI: 10.1038/nature07719
Google Scholar
[20]
G. Xin, H. Sun, T. Hu, X. Sun, Large-Area Freestanding Graphene Paper for Superior Thermal Management, Advanced Materials, (2014).
DOI: 10.1002/adma.201400951
Google Scholar
[21]
D. H. Lee, J. E. Kim, T. H. Han, J. W. Hwang, Versatile Carbon Hybrid Films Composed of Vertical Carbon Nanotubes Grown on Mechanically Compliant Graphene Films, 22, (2010), 1247-1252.
DOI: 10.1002/adma.200903063
Google Scholar
[22]
D. Frederico, R. Rurali, P. Ordejon, Electronic Transport between Graphene Layers Covalently Connected by Carbon Nanotubes, ACS. Nano, 4, (2010), 7596-7602.
DOI: 10.1021/nn102206n
Google Scholar
[23]
A. R. Ranjbartoreh, B. Wang, X. Shen, G. Wang, Advanced mechanical properties of graphene paper, J. of Applied Physics 109, (2011), 014306.
DOI: 10.1063/1.3528213
Google Scholar
[24]
Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, A Three-Dimensional Carbon Nanotube/GrapheneSandwich and Its Application as Electrode in Supercapacitors, Adv Mater, 22, (2010), 3723-3728.
DOI: 10.1002/adma.201001029
Google Scholar
[25]
H. P. Cong, X. C. Ren, P. Wang, S. H. Yu, Flexible graphene polyniline composite paper for high performance supercapacitor, Energy Environ. Sci. 6, (2013), 1185-1191.
DOI: 10.1039/c2ee24203f
Google Scholar
[26]
Y. Su. Kim, K. Kumar, F. T. Fisher, and E. H. Yang, Out of plane growth of CNTs on graphene for supercapacitor applications, Nanotechnolygy 23 (2012), 015301-015307.
DOI: 10.1088/0957-4484/23/1/015301
Google Scholar
[27]
Z. Y. Yang, Y. F. Zhao, Q. Q. Xiao, Y. Xia, Zhang, L. Jing, Y. M. Yan, K. N. Sun, Controllable Growth of CNTs on Graphene as high-performance electrode material for supercapacitors, Appl. Mater. Interfaces, 6 (2014), 8497-8504.
DOI: 10.1021/am501362g
Google Scholar
[28]
D. D. H. Lee, E. J. Kim, H. T. Han, Versatile Carbon Hybrid Films Composed of Vertical Carbon Nanotubes Grown on Mechanically Compliant Graphene Films, Adv. Mater. 22, (2010), 1247-1252.
DOI: 10.1002/adma.200903063
Google Scholar
[29]
D. Yu, L. Dai, Self-Assembled Graphene/Carbon Nanotube Hybrid films for supercapacitors, 1, (2010), 467-470.
Google Scholar
[30]
D. Sun, X. Yan, J. Lang, Q. Xue, High performance supercapacitor electrode based on grapheme paper via flame-induced reduction of grapheme oxide paper, J. of Power Source, 222, (2013), 52-58.
DOI: 10.1016/j.jpowsour.2012.08.059
Google Scholar
[31]
Z. Yan, Z. Peng, G. Casillas, J. Lin, Rebar Graphene, J. ACS. Nano 8, (2014), 5061-5068.
Google Scholar
[32]
J. Yan, T. Wei, Z. Fan, W. Qian, Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors, J. of Power Sources 195, (2010), 3041-3045.
DOI: 10.1016/j.jpowsour.2009.11.028
Google Scholar
[33]
Y. Su. Kim, K. Kumar, F. T. Fisher, E. H. Yang, Out of plane growth of CNTs on graphene for supercapacitor applications, 23 (2012), 015301.
DOI: 10.1088/0957-4484/23/1/015301
Google Scholar
[34]
D. Sun, X. Yan, J. Lang, Q. Xue, High performance supercapacitor electrode based on grapheme paper via flame-induced reduction of grapheme oxide paper, J. of Power Source, 222, (2013), 52-58.
DOI: 10.1016/j.jpowsour.2012.08.059
Google Scholar