[1]
M. Bernius, M. Inbasekaran, E. Woo, W. Wu, L. Wujkowski, Light-emitting diodes based on fluorene polymers, Thin Solid Films. 363 (2000) 55.
DOI: 10.1016/s0040-6090(99)00982-7
Google Scholar
[2]
B. Liu, Y.U. Niu, W.L. Yu, Y. Cao, W. Huang, Application of alternating fluorene and thiophene copolymers in polymer light-emitting diodes, Synth Met. 129 (2002) 129.
DOI: 10.1016/s0379-6779(02)00014-0
Google Scholar
[3]
U. Scherf, E.J.W. List, Semiconducting Polyfluorenes-Towards Reliable Structure-Property Relationships, Adv. Mater. 14 (2002) 477.
DOI: 10.1002/1521-4095(20020404)14:7<477::aid-adma477>3.0.co;2-9
Google Scholar
[4]
D. Neher, Polyfluorene Homopolymers: Conjugated Liquid-Crystalline Polymers for Bright Blue Emission and Polarized Electroluminescence, Macromol. Rapid Commun. 22 (2001) 1365.
DOI: 10.1002/1521-3927(20011101)22:17<1365::aid-marc1365>3.0.co;2-b
Google Scholar
[5]
U. Scherf, E.J.W. List, Adv. Mater. 14 (2002) 477.
Google Scholar
[6]
T. Miteva, A. Meisel, W. Knoll, H.G. Nothofer, U. Scherf, D.C. Muller, K. Meerholz, A. Yasuda, D. Neher, Improving the Performance of Polyfluorene-Based Organic Light-Emitting Diodes via End-capping, Adv. Mater. 13 (2001) 565.
DOI: 10.1002/1521-4095(200104)13:8<565::aid-adma565>3.0.co;2-w
Google Scholar
[7]
J. Luo, J.B. Peng, Y. Cao, Q. Hou, High-efficiency red light-emitting diodes based on polyfluorene copolymers with extremely low content of 4, 7-di-2-thienyl-2, 1, 3-benzothiadiazole comparative studies of intrachain and interchain interaction, Appl. Phys. Lett. 87 (2005).
DOI: 10.1063/1.2150251
Google Scholar
[8]
L.H. Chan, Y.D. Lee, C.T. Chen, Synthesis and Characterization of 3, 4-Diphenylmaleimide Copolymers That Exhibit Orange to Red Photoluminescence and Electroluminescence, Macromolecules 39 (2006) 3262.
DOI: 10.1021/ma052083f
Google Scholar
[9]
N.S. Cho, J.H. Park, S.K. Lee, J. Lee, H.K. Shim, M.J. Park, D.H. Hwang, B.J. Jung, Saturated and Efficient Red Light-Emitting Fluorene-Based Alternating Polymers Containing Phenothiazine Derivatives, Macromolecules 39 (2006) 177.
DOI: 10.1021/ma051784+
Google Scholar
[10]
I.S. Millard, Syntheses of ethyl and ethoxy-substituted polyaniline complexes, Synth. Met. 111–112 (2000) 119.
Google Scholar
[11]
J. Wlosnewski, P. Piyakulawat, A. Keawprajak, C. Saekung, U. Asawapirom, A low-band-gap polyfluorene derivative for use in polymer solar cells, Thammasat Inter. J. Sci. Tech.
Google Scholar
[12]
U. Asawapirom, A. Keawprajak, P. Piyakulawat, A. Klamchuen, P. Iamraksa, Influence of crystallizable solvent on the morphology and performance of P3HT: PCBM bulk heterojunction solar cells, Sol. Energy Mater. Sol. Cell. 94 (2010) 531-536.
DOI: 10.1016/j.solmat.2009.11.018
Google Scholar
[13]
S. Bertho, G. Janssen, T.J. Cleij, B. Conings, W. Moons, A. Gadisa, J.D. Haen, D. Vanderzande, Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer: fullerene solar cells, Sol. Energy Mater. Sol. Cells. 92(2008).
DOI: 10.1016/j.solmat.2008.01.006
Google Scholar
[14]
L.M. Chen, Z. Hong, G. Li, Y. Yang, Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells, Adv. Mater. 21 (2009) 1434–1449.
DOI: 10.1002/adma.200802854
Google Scholar
[15]
H. Hoppe, N.S. Sariciftci, Morphology of polymer/fullerene bulk heterojunction solar cells, J. Mater. Chem. 16 (2005) 45–61.
DOI: 10.1039/b510618b
Google Scholar
[16]
J.H. Huang, Z.Y. Ho, D. Kekuda, Y. Chang, C.W. Chu, K.C. Ho, Effects of nanomorphological changes on the performance of solar cells with blends of poly [9, 90-dioctyl-fluorene-co-bithiophene] and a soluble fullerene, Nano- technology 20 (2009).
DOI: 10.1088/0957-4484/20/2/025202
Google Scholar
[17]
Hummelen JC, Knight BW, LePeg F, Wudl F. Preparation and characterization of fulleroid and methanofullerene derivatives, J. Org. Chem. 60 (1995) 532-538.
DOI: 10.1021/jo00108a012
Google Scholar
[18]
J.Y. Kim, S.H. Kim, H.H. Lee, K. Lee, W. Ma, X. Gong, and Alan J. Heeger, New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer, Adv. Mater. 18 (2006) 572–576.
DOI: 10.1002/adma.200501825
Google Scholar
[19]
M. Brinkmann, Directional epitaxial crystallization and tentative crystal structure of poly (9, 90-di-n-octyl-2, 7-fluorene), Macromolecules 40 (2007) 7532–7541.
DOI: 10.1021/ma071390d
Google Scholar
[20]
Y. Zhao, Z. Xie, Y. Qu, Y. Geng, L. Wang, Solvent–vapor treatment induced performance enhancement of poly(3-hexylthiophene): methanafullerene bulk-heterojunction photovoltaic cells, Appl. Phys. Lett. 90 (2007).
DOI: 10.1063/1.2434173
Google Scholar
[21]
G. Li, V. Shrotriya, Y. Yao, Y. Yang, Investigate of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthio- phene), J. Appl. Phys. 98 (2005).
DOI: 10.1063/1.2008386
Google Scholar
[22]
Y. Yao, J. Hou, Z. Xu, G. Li, Y. Yang, Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells, Adv. Funct. Mater. 18 (2008) 1783-1789.
DOI: 10.1002/adfm.200701459
Google Scholar
[23]
Y.C. Huang, Y.C. Liao, S.S. Li, M.C. Wu, C.W. Chen, W.F. Su, Study of the effect of annealing process on the performance of P3HT/PCBM photovoltaic devices using scanning-probe microscopy, Sol. Energy Mater. Sol. Cells. 93 (2009) 888-892.
DOI: 10.1016/j.solmat.2008.10.027
Google Scholar
[24]
G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High- efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nat. Mater. 4 (2005) 864–868.
DOI: 10.1038/nmat1500
Google Scholar