The Study of Crystallization of Polyfluorene and Fullerene Derivatives in Semiconducting Layer of Organic Solar Cells

Article Preview

Abstract:

This research was focused on the effect of solid crystallization additive namely 1,4-dichlorobenzene (PDCB) in the 1:2 (w/w) active layer of benzothiadiazole/thiophene-based copolymers (PFTBzTT) to [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) on the morphology and performance of bulk heterojunction (BHJ) organic solar cells. The active layer was deposited by spin-coating with chloroform solutions by different PDCB additive concentrations from 0-52 mg/ml. The inclusion of additive into the polymer solution was able to improve the performance of BHJ solar cells. The maximum power conversion efficiency (PCE) of 0.84% achieved for a cell with PDCB concentration of 36 mg/ml after annealing at 180 °C for 20 min. The XRD and TEM techniques used to analyse the crystal structure and morphology of the thin films. From these results were found that PDCB additive presented higher level of PCBM crystal structure by more aggregation of PCBM and a larger extent of phase separation than those of the films without additive. The AFM results demonstrated that the optimum PDCB concentration and annealing process helped PCBM aggregated into micron sized crystal rods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

435-441

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bernius, M. Inbasekaran, E. Woo, W. Wu, L. Wujkowski, Light-emitting diodes based on fluorene polymers, Thin Solid Films. 363 (2000) 55.

DOI: 10.1016/s0040-6090(99)00982-7

Google Scholar

[2] B. Liu, Y.U. Niu, W.L. Yu, Y. Cao, W. Huang, Application of alternating fluorene and thiophene copolymers in polymer light-emitting diodes, Synth Met. 129 (2002) 129.

DOI: 10.1016/s0379-6779(02)00014-0

Google Scholar

[3] U. Scherf, E.J.W. List, Semiconducting Polyfluorenes-Towards Reliable Structure-Property Relationships, Adv. Mater. 14 (2002) 477.

DOI: 10.1002/1521-4095(20020404)14:7<477::aid-adma477>3.0.co;2-9

Google Scholar

[4] D. Neher, Polyfluorene Homopolymers: Conjugated Liquid-Crystalline Polymers for Bright Blue Emission and Polarized Electroluminescence, Macromol. Rapid Commun. 22 (2001) 1365.

DOI: 10.1002/1521-3927(20011101)22:17<1365::aid-marc1365>3.0.co;2-b

Google Scholar

[5] U. Scherf, E.J.W. List, Adv. Mater. 14 (2002) 477.

Google Scholar

[6] T. Miteva, A. Meisel, W. Knoll, H.G. Nothofer, U. Scherf, D.C. Muller, K. Meerholz, A. Yasuda, D. Neher, Improving the Performance of Polyfluorene-Based Organic Light-Emitting Diodes via End-capping, Adv. Mater. 13 (2001) 565.

DOI: 10.1002/1521-4095(200104)13:8<565::aid-adma565>3.0.co;2-w

Google Scholar

[7] J. Luo, J.B. Peng, Y. Cao, Q. Hou, High-efficiency red light-emitting diodes based on polyfluorene copolymers with extremely low content of 4, 7-di-2-thienyl-2, 1, 3-benzothiadiazole comparative studies of intrachain and interchain interaction, Appl. Phys. Lett. 87 (2005).

DOI: 10.1063/1.2150251

Google Scholar

[8] L.H. Chan, Y.D. Lee, C.T. Chen, Synthesis and Characterization of 3, 4-Diphenylmaleimide Copolymers That Exhibit Orange to Red Photoluminescence and Electroluminescence, Macromolecules 39 (2006) 3262.

DOI: 10.1021/ma052083f

Google Scholar

[9] N.S. Cho, J.H. Park, S.K. Lee, J. Lee, H.K. Shim, M.J. Park, D.H. Hwang, B.J. Jung, Saturated and Efficient Red Light-Emitting Fluorene-Based Alternating Polymers Containing Phenothiazine Derivatives, Macromolecules 39 (2006) 177.

DOI: 10.1021/ma051784+

Google Scholar

[10] I.S. Millard, Syntheses of ethyl and ethoxy-substituted polyaniline complexes, Synth. Met. 111–112 (2000) 119.

Google Scholar

[11] J. Wlosnewski, P. Piyakulawat, A. Keawprajak, C. Saekung, U. Asawapirom, A low-band-gap polyfluorene derivative for use in polymer solar cells, Thammasat Inter. J. Sci. Tech.

Google Scholar

[12] U. Asawapirom, A. Keawprajak, P. Piyakulawat, A. Klamchuen, P. Iamraksa, Influence of crystallizable solvent on the morphology and performance of P3HT: PCBM bulk heterojunction solar cells, Sol. Energy Mater. Sol. Cell. 94 (2010) 531-536.

DOI: 10.1016/j.solmat.2009.11.018

Google Scholar

[13] S. Bertho, G. Janssen, T.J. Cleij, B. Conings, W. Moons, A. Gadisa, J.D. Haen, D. Vanderzande, Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer: fullerene solar cells, Sol. Energy Mater. Sol. Cells. 92(2008).

DOI: 10.1016/j.solmat.2008.01.006

Google Scholar

[14] L.M. Chen, Z. Hong, G. Li, Y. Yang, Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells, Adv. Mater. 21 (2009) 1434–1449.

DOI: 10.1002/adma.200802854

Google Scholar

[15] H. Hoppe, N.S. Sariciftci, Morphology of polymer/fullerene bulk heterojunction solar cells, J. Mater. Chem. 16 (2005) 45–61.

DOI: 10.1039/b510618b

Google Scholar

[16] J.H. Huang, Z.Y. Ho, D. Kekuda, Y. Chang, C.W. Chu, K.C. Ho, Effects of nanomorphological changes on the performance of solar cells with blends of poly [9, 90-dioctyl-fluorene-co-bithiophene] and a soluble fullerene, Nano- technology 20 (2009).

DOI: 10.1088/0957-4484/20/2/025202

Google Scholar

[17] Hummelen JC, Knight BW, LePeg F, Wudl F. Preparation and characterization of fulleroid and methanofullerene derivatives, J. Org. Chem. 60 (1995) 532-538.

DOI: 10.1021/jo00108a012

Google Scholar

[18] J.Y. Kim, S.H. Kim, H.H. Lee, K. Lee, W. Ma, X. Gong, and Alan J. Heeger, New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer, Adv. Mater. 18 (2006) 572–576.

DOI: 10.1002/adma.200501825

Google Scholar

[19] M. Brinkmann, Directional epitaxial crystallization and tentative crystal structure of poly (9, 90-di-n-octyl-2, 7-fluorene), Macromolecules 40 (2007) 7532–7541.

DOI: 10.1021/ma071390d

Google Scholar

[20] Y. Zhao, Z. Xie, Y. Qu, Y. Geng, L. Wang, Solvent–vapor treatment induced performance enhancement of poly(3-hexylthiophene): methanafullerene bulk-heterojunction photovoltaic cells, Appl. Phys. Lett. 90 (2007).

DOI: 10.1063/1.2434173

Google Scholar

[21] G. Li, V. Shrotriya, Y. Yao, Y. Yang, Investigate of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthio- phene), J. Appl. Phys. 98 (2005).

DOI: 10.1063/1.2008386

Google Scholar

[22] Y. Yao, J. Hou, Z. Xu, G. Li, Y. Yang, Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells, Adv. Funct. Mater. 18 (2008) 1783-1789.

DOI: 10.1002/adfm.200701459

Google Scholar

[23] Y.C. Huang, Y.C. Liao, S.S. Li, M.C. Wu, C.W. Chen, W.F. Su, Study of the effect of annealing process on the performance of P3HT/PCBM photovoltaic devices using scanning-probe microscopy, Sol. Energy Mater. Sol. Cells. 93 (2009) 888-892.

DOI: 10.1016/j.solmat.2008.10.027

Google Scholar

[24] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High- efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nat. Mater. 4 (2005) 864–868.

DOI: 10.1038/nmat1500

Google Scholar