Microwave-Assisted Preparation of Sodium Silicate as Biodiesel Catalyst from Rice Husk Ash

Article Preview

Abstract:

In this research, sodium silicate (Na2SiO3) was prepared by rice husk ash reacted with 10 M sodium hydroxide. The mixtures were heated by microwave at 400, 600, and 800 watt for 5 and 10 minutes. The formation of sodium silicate was characterized by Fourier transform infrared spectrophotometer. The vibrations of (Na)O–Si–O(Na) and O–Si–O were observed at 595 and 1023-986 cm-1, respectively, except at 800 watt disappeared those vibrations. The results of flame atomic absorption spectrophotometer provided the mole ratio of sodium and silicon was 2:1 as heating the product at 600 watt for 5 and 10 minutes. The phase of sodium silicate was characterized by X-ray diffraction. Sodium silicate could be used as catalyst as in biodiesel production from palm oil. The percentage of yield was 81 by volume.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

461-466

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.P. Della, I. Kühn and D. Hotza, Rice husk ash as an alternate source for active silica production, Mater. Lett. 57 (2002) 818-821.

DOI: 10.1016/s0167-577x(02)00879-0

Google Scholar

[2] M. Ahmaruzzaman and V. K. Gupta, Rice husk and its ash as low-cost adsorbents in water and wastewater treatment, Ind. Eng. Chem. Res. 50 (2011) 13589-13613.

DOI: 10.1021/ie201477c

Google Scholar

[3] U. Kalapathy, A. Proctor and J. Shutlz, A simple method for production of pure silica from rice hull ash, Bioresour. Technol. 73 (2000) 257-262.

DOI: 10.1016/s0960-8524(99)00127-3

Google Scholar

[4] U. Kalapathy, A. Proctor and J. Shutlz, An improved method for production of silica from rice hull ash, Bioresour. Technol. 85 (2002) 285-289.

DOI: 10.1016/s0960-8524(02)00116-5

Google Scholar

[5] H. I. El Shimi, N. K. Attia, G. I. El Diwani and S. T. El Sheltawy, Investigation of silicates as a catalyst in biodiesel production: A review, Int. J. Energy Res. 40 (2016) 1743-1756.

DOI: 10.1002/er.3546

Google Scholar

[6] U. Kalapathy, A. Proctor and J. Shultz, Silicate thermal insulation material form rice hull ash, Ind. Eng. Chem. Res. 42 (2003) 46-49.

DOI: 10.1021/ie0203227

Google Scholar

[7] E. L. Foletto, E. Gratieri, L. H. de Oliveira and S. L. Jahn, Conversion of rice hull ash into soluble sodium silicate, Materials Research, 9 (2006) 335-338.

DOI: 10.1590/s1516-14392006000300014

Google Scholar

[8] T. Selvam, B. Bandarapu, G. T. P. Mabande, H. Toufar and W. Schwieger, Hydrothermal transformation of layered sodium silicate, kanemite, into zeolite Beta (BEA), Microporous Mesoporous Mater. 64 (2003) 41-50.

DOI: 10.1016/s1387-1811(03)00508-0

Google Scholar

[9] N. Hindryawati, G. P. Maniam, Md. R. Karim and K. F. Chong, Transesterification of used cooking oil over alkali metal (Li, Na, K) supported rice husk silica as potential solid base catalyst, JESTECH. 17 (2014) 95-103.

DOI: 10.1016/j.jestch.2014.04.002

Google Scholar

[10] M. D. Serio, R. Tessor, L. Pengmei and E. Santancesaria, Heterogeneous catalysts for biodiesel production, Energy Fuels. 22 (2008) 207-217.

DOI: 10.1021/ef700250g

Google Scholar

[11] M. Zabeti, W. M. A. W. Daud and M. K. Arour, Activity of solid catalysts for biodiesel production: A review, Fuel Process. Technol. 90 (2009) 770-777.

DOI: 10.1016/j.fuproc.2009.03.010

Google Scholar

[12] G. Chen, R. Shan, J. Shi and B. Yan, Transesterification of palm oil to biodiesel using rice husk, Fuel Processing Technol. 133 (2015) 8-13.

DOI: 10.1016/j.fuproc.2015.01.005

Google Scholar

[13] K. J. Rao, B. Vaidhyanathan, M. Ganguli and P. A. Ramakrishnan, Synthesis of inorganic solids using microwaves, Chem. Mater. 11 (1999) 882-895.

DOI: 10.1021/cm9803859

Google Scholar

[14] T. Maneerung, S. Kawi, C. Wang, Biomass gasification bottom ash as a source of CaO catalyst for biodiesel production of palm oil, Energ. Convers. Manage. 92 (2015) 234-243.

DOI: 10.1016/j.enconman.2014.12.057

Google Scholar

[15] A. Birla, B. Singh, S. N. Upadhyay, Y. C. Sharma, Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell, Bioresour. Technol. 106 (2012) 95-100.

DOI: 10.1016/j.biortech.2011.11.065

Google Scholar

[16] I. Halasz, M. Agarwal, R. Li and N. Miller, What can vibrational spectroscopy tell about the structure of dissolved sodium silicate, Microporous Mesoporous Mater. 135 (2010) 74-81.

DOI: 10.1016/j.micromeso.2010.06.013

Google Scholar

[17] I. Halasz, M. Agarwal, R. Li and N. Miller, Vibrational spectra and dissociation of aqueous Na2SiO3 solutions, Catal. Lett. 117 (2007) 34-42.

DOI: 10.1007/s10562-007-9141-6

Google Scholar

[18] F. Guo, Z. Peng, J. Dai and Z. Xiu, Calcined sodium silicate as solid base catalyst for biodiesel production, Fuel Processing Technol. 91 (2010) 322-328.

DOI: 10.1016/j.fuproc.2009.11.003

Google Scholar

[19] Joint Committee on Powder Diffraction Standards (JCPDS). Powder Diffraction File, Card No. 00-001-0836, Swarthmore, PA.

Google Scholar

[20] A. P. Ault and R. Pomeroy, Quantitative investigations of biodiesel fuel using infrared spectroscopy: An instrumental analysis experiment for undergraduate chemistry students, J. Chem. Educ. 89 (2012) 243-247.

DOI: 10.1021/ed101097n

Google Scholar

[21] F. Zhang, D. Adachi, S. Tamalampudi, A. Kondo and K. Tominage, Real-time monitoring of the transesterification of soybean oil and methanol by Fourier transform infrared spectroscopy, Energy Fuels, 27 (2013) 5957-2961.

DOI: 10.1021/ef4012998

Google Scholar

[22] A. Velloso, A. de Souza and J. F. C. da Silva, Biodiesel synthesis evaluated by using real-time ATR-FTIR, Org. Process Res. Dev. 17 (2013) 127-132.

DOI: 10.1021/op300318k

Google Scholar