[1]
Information on http: /www. fs. fed. us/research/pdf/biomass_importance. pdf.
Google Scholar
[2]
S. J. Oh, S. H. Jung and J. S. Kim, Co-production of furfural and acetic acid from corncob using ZnCl2 through fast pyrolysis in a fluidized bed reactor, Bioresour. Technol. vol. 144, p.172–178, (2013).
DOI: 10.1016/j.biortech.2013.06.077
Google Scholar
[3]
H. Li, et al, A modified biphasic system for the dehydration of d-xylose into furfural using SO42−/TiO2−ZrO2/La3+ as a solid catalyst, Catal. Today, vol. 234, p.251–256, (2014).
DOI: 10.1016/j.cattod.2013.12.043
Google Scholar
[4]
Z. Liu and R. Balasubramanian, Hydrothermal carbonization of waste biomass for energy generation, Procedia Environmental Sciences, vol. 16, p.159 – 166, (2012).
DOI: 10.1016/j.proenv.2012.10.022
Google Scholar
[5]
L. Fiori, D. Bassoa, D. Castelloa and M. Baratieri, Hydrothermal Carbonization of Biomass: Design of a Batch Reactor and Preliminary Experimental Results, CHEMICAL ENGINEERING TRANSACTIONS, vol. 37, pp.55-60, (2014).
Google Scholar
[6]
J. Libra, K. Ro, Kammann C., Funke A., Berg N., Neubauer Y., Biofuel, vol 2, pp.89-124, (2011).
Google Scholar
[7]
Sevilla M., Macia-Agullo JA., Fuertes A., Biomass and Bioenergy, vol 35, pp.3152-3159. (2013).
Google Scholar
[8]
Hu, B., Wang, K., Wu, L.H., Yu, S.H., Antonietti, M., Titirici, M.M., Engineering carbon porous materials from the hydrothermal carbonization process of biomass. Adv. Mater, vol 22, p.813–828, (2010).
DOI: 10.1002/adma.200902812
Google Scholar
[9]
Titirici, M.M., Thomas, A., Yu, S.H., Muller, J.O., Antonietti, M., A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization. Chem. Mater, vol 19, p.4205–4212, (2007).
DOI: 10.1021/cm0707408
Google Scholar
[10]
Sevilla, M., Fuertes, A.B., Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem. Eur. J, vol 15, p.4195–4203, (2009).
DOI: 10.1002/chem.200802097
Google Scholar
[11]
Sevilla, M., Fuertes, A.B., The production of carbon porous materials by hydrothermal carbonization of cellulose. Carbon, vol 47, p.2281–2289, (2009).
DOI: 10.1016/j.carbon.2009.04.026
Google Scholar
[12]
Titirici, M. M., Thomas, A., Yu, S. H., Muller, J., Antonietti, M. A directbsynthesis of mesopore carbon with bicontinuous pore morphology from crude plant material by hydrothermal carbonization. Chemistry of Materials, Vol. 19, pp.4205-4212. ISSN 1520-5002, (2007).
DOI: 10.1021/cm0707408
Google Scholar
[13]
H. Yang, et al, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, vol. 86, p.1781–1788, (2007).
DOI: 10.1016/j.fuel.2006.12.013
Google Scholar
[14]
Lj. Kandić, M. Mitrić and N. Ignjatović, XRD Analysis of Calcium Phosphate and Biocomposite Calcium Phosphate/Bioresorbable Polymer, Materials Science Forum, vol. 518, pp.507-512, (2006).
DOI: 10.4028/www.scientific.net/msf.518.507
Google Scholar
[15]
C. R. Bhattacharjee, et al, Synthesis, X-ray Diffraction Study and Antimicrobial Activity of Calcium Sulphate Nanocomposites from Plant Charcoal, Materials, vol. 2, pp.345-352, (2009).
DOI: 10.3390/ma2020345
Google Scholar