Synthesis of Ternary Semiconductor Silver Bismuth Telluride by Chemical Bath Deposition

Article Preview

Abstract:

In this study, the synthesis of the ternary semiconductor sensitized silver bismuth telluride (AgBiTe2: SBT) particles was produced in the solution of AgNO3, Bi (NO3)3×5H2O and Na2O3Te by using a chemical bath deposition (CBD) method and annealing at 200°C for 1 h. According to scanning electron microscopy (SEM), the particle size of SBT after annealing was bigger than before annealing. Based on X-ray diffraction, the SBT after annealing for 1h became more crystalline. In addition, the XRF data also demonstrated that the SBT powder consists of Ag, Bi, and Te as dominant elements. The XRD result confirms a successful growth of the SBT particles with rhombohedral crystal structure. Based on the obtaining results, the SBT particles were successfully synthesized and potentially applied for solar cell application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

489-493

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.K. Jun, M.A. Careem, A.K. Arof, Quantum dot-sensitized solar cells-perspective and recent developments: A review of Cd chalcogenide quantum dots as sensitizers, Renew. Sust. Energ. Rev. 22 (2013) 148-167.

DOI: 10.1016/j.rser.2013.01.030

Google Scholar

[2] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells, Chem. Rev. 110 (2010) 6595-6663.

DOI: 10.1021/cr900356p

Google Scholar

[3] C.J. Brabec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia, S.P. Williams, Polymer-fullerene bulk-heterojunction solar cells, Adv. Mater. 22 (2010) 3839-3856.

DOI: 10.1002/adma.200903697

Google Scholar

[4] A.G. Pattantyus-Abraham, I.J. Kramer, A.R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M.K. Nazeeruddin, M. Grätzel, E.H. Sargent, Depleted-heterojunction colloidal quantum dot solar cells, ASC Nano 4 (2010) 3374-3380.

DOI: 10.1021/nn100335g

Google Scholar

[5] J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S. Il Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar sells, Nano Lett. 13 (2013) 1764-1769.

DOI: 10.1021/nl400349b

Google Scholar

[6] P. Termsaithong, A. Tubtimtae, Boron-doped CuInTe2 semiconductor-sensitized liquid-junction solar cells, Mater. Lett. 138 (2015) 41-44.

DOI: 10.1016/j.matlet.2014.09.094

Google Scholar

[7] S. Shen, Q. Wang, Rational tuning the optical properties of metal sulfide nanocrystals and their applications, Chem. Mater. 25 (2013) 1166-1178.

DOI: 10.1021/cm302482d

Google Scholar

[8] D.J. Temple, A.B. Kehoe, J.P. Allen, G.W. Watson, D.O. Scanlon, geometry, electronic structure, and bonding in CuMCh2 (M = Sb, Bi; Ch = S, Se): alternative solar cell absorber materials, J. Phys. Chem. C. 116 (2012) 7334-7340.

DOI: 10.1021/jp300862v

Google Scholar

[9] T. Thongtem, N. Tipcompor, S. Thongtem, Characterization of AgBiS2 nanostructured flowers produced by solvothermal reaction, Mater. Lett. 64 (2010) 755-758.

DOI: 10.1016/j.matlet.2010.01.003

Google Scholar

[10] P.C. Huang, W.C. Yang, M.W. Lee, AgBiS2 Semiconductor-sensitized solar cells, J. Phys. Chem. C 117 (2013) 18308-18314.

Google Scholar

[11] N. Suriyawong, B. Aragaw, J.B. Shi, M.W. Lee, Ternary CuBiS2 nanoparticles as a sensitizer for quantum dot solar cells, J. Colloid Interf. Sci. 473 (2016) 60-65.

DOI: 10.1016/j.jcis.2016.03.062

Google Scholar

[12] S. Budak, S. Guner, C. Muntele, and D. Ila, Thermoelectric Generators from AgBiTe and AgSbTe thin films modified by high-energy beam, J. Electron. Mater. 44 (2015) 1884-1889.

DOI: 10.1007/s11664-014-3581-8

Google Scholar

[13] G. Tan, F. Shi, H Sun, L.D. Zhao, C. Uher, V. P. Dravid and M. G. Kanatzidis, SnTe-AgBiTe2 as an efficient thermoelectric material with low thermal conductivity, J. Mater. Chem. A. 2 (2014) 20849-20854.

DOI: 10.1039/c4ta05530f

Google Scholar

[14] M. B. Babanly, Yu. M. Shykhyev, N. B. Babanly, and Yu. A. Yusibov, Phase equilibria in the Ag-Bi-Te system, Russ. J. Inorg. Chem. 52 (2007) 487-493.

DOI: 10.1134/s0036023607030242

Google Scholar

[15] A. Rodchanarowan, P.K. Sarswat, R. Bhide, M.L. Free, Production of copper from minerals through controlled and sustainable electrochemistry, Eletrochim Acta 91 (2013) 246-252.

DOI: 10.1016/j.electacta.2014.07.015

Google Scholar

[16] A.S. Hassanien, A.A. Akl, Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50-xSe50 thin films, J. Alloy. Compd. 648 (2015) 280-290.

DOI: 10.1016/j.jallcom.2015.06.231

Google Scholar