[1]
G. A. Olah, Towards oil independence through renewablemethanol chemistry, Angew Chem Int Ed. 52 (2013) 104–107.
DOI: 10.1002/anie.201204995
Google Scholar
[2]
M. Bjørgen, F. Joensen, K. -P. Lillerud, U. Olsbye, S. Svelle, The mechanisms of ethene and propene formation from methanol over high silica H-ZSM-5 and H-beta, Catal. Today. 142 (2009) 90– 97.
DOI: 10.1016/j.cattod.2009.01.015
Google Scholar
[3]
I. M. Dahl, S. Kolboe, On the reaction mechanism for propene formation in the MTO reaction over SAPO-34, Catal Lett. 20 (1993) 329 –333.
DOI: 10.1007/bf00769305
Google Scholar
[4]
S. Lopez-Orozco, A. Inayat, A. Schwab, T. Selvam, W. Schwieger, Zeolitic materials with hierarchical porous structures, Adv Mater. 23 (2011) 2602–2615.
DOI: 10.1002/adma.201100462
Google Scholar
[5]
A. Hagen, F. Roessner, Ethane to Aromatic Hydrocarbons: Past, Present, Future, Catal Rev. 42 (2000) 403–437.
DOI: 10.1081/cr-100101952
Google Scholar
[6]
O. Yoshio, A. Hiroshi, S. Yoko, Selective conversion of methanol into aromatic hydrocarbons over zinc exchanged ZSM-5 zeolites, J Chem Soc Faraday Trans, 1 (1988) 1091- 1099.
DOI: 10.1039/f19888401091
Google Scholar
[7]
M. Stöcker, Methanol-to-hydrocarbons: catalytic materials and their behavior, Micro porous Mesoporous Mater. 29 (1999) 3–48.
Google Scholar
[8]
Z. M. Cui, Q. Liu, S. W. Bain, Z. Ma, W. G. Song, The Role of Methoxy Groups in Methanol to Olefin Conversion, J Phys Chem C. 112 (2008) 2685–2688.
DOI: 10.1021/jp710491h
Google Scholar
[9]
M. Bjørgen, F. Joensen, K. P. Lillerud, U. Olsbye, S. Svelle, The mechanisms of ethene and propene formation from methanol over high silica H-ZSM-5 and H-beta, Catal Today. 142 (2009) 90–97.
DOI: 10.1016/j.cattod.2009.01.015
Google Scholar
[10]
D. Li, Y. Zheng, X.Y. Wang, Pt-loaded P-MCM-41 as a novel bifunctional catalyst for catalytic combustion of trichloroethylene, Catal Commun. 8 (2007) 1583–1587.
DOI: 10.1016/j.catcom.2007.01.004
Google Scholar
[11]
D. Li, Y. Zheng, X.Y. Wang, Effect of phosphoric acid on catalytic combustion of trichloroethylene over Pt/P-MCM-41, Appl. Catal. A: Gen. 340 (2008) 33–41.
DOI: 10.1016/j.apcata.2008.01.035
Google Scholar
[12]
Y. Wan, Y. Hai, Q.F. Zhao, M. Klingstedt, O. Terasaki, D.Y. Zhao, Ordered Mesoporous Pd/Silica−Carbon as a Highly Active Heterogeneous Catalyst for Coupling Reaction of Chlorobenzene in Aqueous Media, J Am Chem Soc. 131 (2009) 4541–4550.
DOI: 10.1021/ja808481g
Google Scholar
[13]
S. Kawi, S.C. Shen, P.L. Chew, Generation of Brønsted acid sites on Si-MCM-41 by grafting of phosphorus species, J Mater Chem. 12 (2007) 1582–1586.
DOI: 10.1039/b107795n
Google Scholar
[14]
S.Y. Chen, T. Yokoi, C.Y. Tang, L.Y. Jang, T. Tatsumi, J.C.C. Chan, S. Cheng, Sulfonic acid-functionalized platelet SBA-15 materials as efficient catalysts for biodiesel synthesis, Green Chem., 13 (2011) 2920–2930.
DOI: 10.1039/c1gc15299h
Google Scholar
[15]
J. K. Shon, X. Yuan, C, H. Ko, H. I. Lee, S. S. Thakur, M. Kang, M. S. Kang, D. Li, J. N. Kim, J. M. Ki, Design of mesoporous solid acid catalysts with controlled acid strength, J. Ind. Eng. Chem., 13 (2007) 1201-1207.
Google Scholar
[16]
B. Wu, Z. Tong, X. Yuan, Synthesis, characterization and catalytic application of mesoporous molecular sieves SBA-15 functionalized with phosphoric acid, J Porous Mater., 19 (2012) 641-647.
DOI: 10.1007/s10934-011-9515-4
Google Scholar
[17]
S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Particle Technol. Ser. 16 (2004).
DOI: 10.1007/978-1-4020-2303-3
Google Scholar
[18]
D. Macinaa, Z. Piwowarskaa, K. Taracha, K. Góra-Mareka, J. Ryczkowskib, L. Chmielarza Mesoporous silica materials modified with alumina polycations as catalysts for the synthesis of dimethyl ether from methanol, Mater Res Bull. 74 (2016) 425–435.
DOI: 10.1016/j.materresbull.2015.11.018
Google Scholar
[19]
M. Richter, J. Janchen, H. G. Jerschkewitz, B. Parlitz, E. Schreier, Specific modification of the external surface of ZSM-5 zeolites by 12-tungstosilicic acid, J Chem Soc Faraday Trans. 87 (1991) 1461-1466.
DOI: 10.1039/ft9918701461
Google Scholar