[1]
A. Thongtha, S. Maneewan, C. Punlek, Y. Ungkoon, Investigation of the compressive strength, time lags and decrement factors of AAC-lightweight concrete containing sugar sediment waste, Energ. Build. 84 (2014) 516–525.
DOI: 10.1016/j.enbuild.2014.08.026
Google Scholar
[2]
A. Thongtha, S. Maneewan, C. Punlek, Y. Ungkoon, "Improving mechanical properties of autoclaved aerated concrete by sugar sediment, Adv. Mater. Res. 807-809 (2013) 1266–1269.
DOI: 10.4028/www.scientific.net/amr.807-809.1266
Google Scholar
[3]
C. Punlek, S. Maneewan, A. Thongtha, Phase change material coating on autoclaved aerated lightweight concrete for cooling load reduction, Mater. Sci. 23 (2017) 145–149.
DOI: 10.5755/j01.ms.23.2.15451
Google Scholar
[4]
N.Y. Mostafa, Influence of air-cooled slag on physicochemical properties of autoclaved aerated concrete, Cem. Concr. Res. 35 (2005) 1349–1357.
DOI: 10.1016/j.cemconres.2004.10.011
Google Scholar
[5]
I.B. Topcu, B. Isıkdag, Effect of expanded perlite aggregate on the properties of lightweight concrete, J. Mater. Process. Tech. 204 (2008) 34-38.
Google Scholar
[6]
B.G. Ma, X. Zheng, Study on a new kind of aerated concrete containing efflorescence sand-phosphorus slag–lime, J. Build. Mater. 2(3) (1999) 223–228.
Google Scholar
[7]
Y. Wang, J. Yin, J.C. Chen, C.Q. Peng, Aerocrete made with low silicon tailings of Cheng Chao iron ore mine, J. Wuhan Univ. Tech. Mater. Sci. Ed. 15(2) (2000) 58–62.
Google Scholar
[8]
K. Jitchaiyaphum, T. Sinsiri, C. Jaturapitakkul, P. Chindaprasirt, Cellular lightweight concrete containing high-calcium fly ash and natural zeolite, Inter. J. Min. Met. Mater. 20(5) (2013) 462–471.
DOI: 10.1007/s12613-013-0752-1
Google Scholar
[9]
C. Narattha, P. Thongsanitgarn, A. Chaipanich, Thermogravimetry analysis, compressive strength and thermal conductivity tests of non-autoclaved aerated Portland cement–fly ash–silica fume concrete, J. Therm. Anal. Calorim. 122 (2015) 11–20.
DOI: 10.1007/s10973-015-4724-8
Google Scholar
[10]
W. Wongkeo, P. Thongsanitgarn, K. Pimraksa, A. Chaipanich, Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials, Mater. Design 35 (2012) 434-439.
DOI: 10.1016/j.matdes.2011.08.046
Google Scholar
[11]
P. Chindaprasirt, C. Jaturapitakkul, T. Sinsiri, Effect of fly ash fineness on microstructure of blended cement paste, Constr. Build. Mater. 21(7) (2007) 1534-1541.
DOI: 10.1016/j.conbuildmat.2005.12.024
Google Scholar
[12]
W. Kroehong, T. Sinsiri, C. Jaturapitakkul, P. Chindaprasirt, Effect of palm oil fuel ash fineness on the microstructure of blended cement paste, Constr. Build. Mater. 25(11) (2011) 4095-4104.
DOI: 10.1016/j.conbuildmat.2011.04.062
Google Scholar
[13]
E. Bernardo, G. Scarinci, P. Bertuzzi, P. Ercole, L. Ramon, Recycling of waste glasses into partially crystallized glass foams, J. Porous Mater. 17 (2010) 359–365.
DOI: 10.1007/s10934-009-9286-3
Google Scholar
[14]
V. Corinaldesi, A. Mazzoli, G. Moriconi, Mechanical behaviour and thermal conductivity of mortars containing waste rubber particles, Mater. Des. 32(3) (2011)1646–1650.
DOI: 10.1016/j.matdes.2010.10.013
Google Scholar
[15]
S. Gutiérrez-González, J. Gadea, A. Rodríguez, C. Junco, V. Calderón, Lightweight plaster materials with enhanced thermal properties made with polyurethane foam wastes, Constr. Build. Mater. 28(1) (2012) 653–658.
DOI: 10.1016/j.conbuildmat.2011.10.055
Google Scholar
[16]
A. Thongtha, K. Angsukased, T. Bongkarn, Fabrication of (Ba1−xSrx)(ZrxTi1−x)O3 ceramics prepared using the combustion technique, Smart Mater. Struc. 19 (2010) 124001.
DOI: 10.1088/0964-1726/19/12/124001
Google Scholar