[1]
Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J. Gong, Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets, Chem. Soc. 133 (2011) 10878–10884.
DOI: 10.1021/ja2025454
Google Scholar
[2]
J. Tang, Z. Zou, J. Ye, Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi2O4 under Visible-Light Irradiation, Chem. Int. Ed. 43 (2004) 4463–4466.
DOI: 10.1002/anie.200353594
Google Scholar
[3]
S.C. Yan, S.X. Ouyang, J. Gao, M. Yang, J. Y. Feng, X. X. Fan, L. J. Wan, Z. S. Li, J. H. Ye, Y. Zhou, Z. G. Zou, A Room-Temperature Reactive-Template Route to Mesoporous ZnGa2O4 with Improved Photocatalytic Activity in Reduction of CO2, Chem. Int. Ed. 49 (2010).
DOI: 10.1002/ange.201003270
Google Scholar
[4]
C.Y. Wang, D.W. Bahnemann, J.K. Dohrmann, A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity, Chem. Commun. 16 (2000) 1539–1540.
DOI: 10.1039/b002988m
Google Scholar
[5]
K. Nakata, A. Fujishima, TiO2 photocatalysis: Design and applications, Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 13 (2012) 169–189.
DOI: 10.1016/j.jphotochemrev.2012.06.001
Google Scholar
[6]
H. An, Y. Du, T. Wang, C. Wang, W. Hao, J. Zhang, Photocatalytic properties of BiOX(X=Cl, Br, and I), RARE METALS. 27 (2008) 243.
DOI: 10.1016/s1001-0521(08)60123-0
Google Scholar
[7]
W. Zhang, Q. Zhang, F. Dong, Visible light photocatalytic removal of NO in air over BiOX (X= Cl, Br, I) single-crystal nanoplates prepared at room temperature, Ind. Eng. Chem. Res. 52 (2013) 6740–6746.
DOI: 10.1021/ie400615f
Google Scholar
[8]
Z. Ai, W. Ho, S. Lee, Efficient Visible Light Photocatalytic Removal of NO with BiOBr-Graphene Nanocomposites, J. Phys. Chem. C. 115 (2011) 25330–25337.
DOI: 10.1021/jp206808g
Google Scholar
[9]
S. Vadivel, M. Vanitha, A. Muthukrishnaraj, N. Balasubramanian, Graphene oxide–BiOBr composite material as highly efficient photocatalyst for degradation of methylene blue and rhodamine-B dyes, Journal of Water Process Engineering. 1 (2014) 17–26.
DOI: 10.1016/j.jwpe.2014.02.003
Google Scholar
[10]
X. Yang, C. Chen, J. Li, G. Zhao, X. Ren, X. Wang, Graphene oxide–iron oxide and reduced graphene oxide–iron oxide hybrid materials for the removal of organic and inorganic pollutants, RSC Adv. 2 (2012) 8821–8826.
DOI: 10.1039/c2ra20885g
Google Scholar
[11]
M. Zhu, P. Chen, M. Liu, Graphene Oxide Enwrapped Ag/AgX (X = Br, Cl) Nanocomposite as a Highly Efficient Visible-Light Plasmonic Photocatalyst, ACS Nano 5. (2011) 4529-4536.
DOI: 10.1021/nn200088x
Google Scholar
[12]
Y. Wang, Z. Shi, C. Fan, X. Wang, X. Hao, Y. Chi, Synthesis, characterization, and photocatalytic properties of BiOBr catalyst, Journal of Solid State Chemistry. 199 (2013) 224–229.
DOI: 10.1016/j.jssc.2012.12.031
Google Scholar
[13]
B. Lu, N. Ma, Y. Wang, Y. Qiu, H. Hu, J. Zhao, D. Liang, S. Xu, X. Li, Z. Zhu, C. Cui, Visible-light-driven TiO2/Ag3PO4/GO heterostructure photocatalyst with dual-channel for photo-generated charges separation, Journal of Alloys and Compounds. 630 (2015).
DOI: 10.1016/j.jallcom.2015.01.008
Google Scholar
[14]
L. Zhang, Z. Xi, M. Xing, J. Zhang, Effects of the preparation order of the ternary P25/GO/Pt hybrid photocatalysts on hydrogen production, International Journal of Hydrogen Energy. 38 (2013) 9169-9177.
DOI: 10.1016/j.ijhydene.2013.05.052
Google Scholar