A Numerical Model for the Simulation of Fatigue Induced Damage Onset and Evolution

Article Preview

Abstract:

In this work, a numerical model for the simulation of the onset and propagation of fatigue induced damages through a GFRP panel loaded in tension is presented. The model has been validated by numerical/experimental comparisons in terms of stiffness reduction over the number of loading cycles, considering three different applied loads. Finally, the model has been adopted to study the damage behaviour of a panel with a central notch damage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

194-197

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Caputo, G. Lamanna, A. De Luca, R. Borrelli, S. Franchitti. Global-Local FE Simulation of a Plate LVI Test. Structural Durability & Health Monitoring – TechScience, 2013; 9(3): 253-267.

DOI: 10.32604/sdhm.2013.009.253

Google Scholar

[2] R. Sepe, A. De Luca, G. Lamanna, F. Caputo. Numerical and experimental investigation of residual strength of a LVI damaged CFRP omega stiffened panel with a cut-out. Composites Part B: Engineering Journal, 2016; 102: 38-56.

DOI: 10.1016/j.compositesb.2016.07.009

Google Scholar

[3] F. Caputo, A. De Luca, R. Sepe. Numerical Study of the Structural Behaviour of Impacted Composite Laminates Subjected to Compression Load. Composites Part B: Engineering Journal, 2015; 79: 456-465.

DOI: 10.1016/j.compositesb.2015.05.007

Google Scholar

[4] F. Caputo, A. De Luca, G. Lamanna, R. Borrelli, U. Mercurio. Numerical Study for the Structural Analysis of Composite Laminates Subjected to Low Velocity Impact. Composite Part B: Engineering Journal, 2014; 67: 296-302.

DOI: 10.1016/j.compositesb.2014.07.011

Google Scholar

[5] W. Van Paepegem, J. Degrieck. Tensile and Compressive Damage Coupling for fully-reversed bending fatigue of fibre-reinforced composites. Fatigue and Fracture of Engineering Materials & Structures, 2002; 25(6): 547-562.

DOI: 10.1046/j.1460-2695.2002.00496.x

Google Scholar

[6] W. Van Paepegem, J. Degrieck. Fatigue damage modelling of fibre-reinforced composite materials. Review: Applied Mechanics Reviews, 2001; 54(4): 279-300.

DOI: 10.1115/1.1381395

Google Scholar

[7] W. Van Paepegem, J. Degrieck. Experimental setup for and numerical modelling of bending fatigue experiments on plain woven glass/epoxy composites. Composite Structures, 2001; 51(1): 1-8.

DOI: 10.1016/s0263-8223(00)00092-1

Google Scholar

[8] M.J. Salkind, Fatigue of composites. Corten, H.T. (ed. ) Composite Materials testing ad design (second conference). ASTM STP 497, Baltimore, American society for testing and materials, 1972: 143-169.

DOI: 10.1520/stp27745s

Google Scholar

[9] H.T. Hahn, R.Y. Kim, Fatigue behaviour of composite laminates. Journal of composite materials, 1976; 10: 156-180.

Google Scholar

[10] T.K. O'Brien, K.L. Reifsnider. Fatigue damage evaluation through stiffness measurements in boron-epoxy laminates. Journal of Composite Materials, 1981; 15: 55-70.

DOI: 10.1177/002199838101500105

Google Scholar

[11] W. Hwang, K.S. Han, Cumulative damage models and multi-stress fatigue life prediction. Journal of Composite Materials, 1986; 20: 125-153.

DOI: 10.1177/002199838602000202

Google Scholar

[12] Abaqus 6. 14: Analysis User's Manual.

Google Scholar