On the Issue of Typical Grain Size Assessment by the Methods of Broadband Laser Opto-Acoustics

Article Preview

Abstract:

It is shown that one of the express-methods for studying the internal structure and phase composition of geomaterial samples is broadband acoustic spectroscopy with laser sources of ultrasound. Theoretical assessment of time profiles and spectrums of opto-acoustic signals are presented. Numerical modelling of the spectrums and time profiles of ultrasound signals generated in opto-acoustic generators made of a different material is performed. The influence of diffraction and damping in rocks on the above characteristics is studied. The amplitude spectrum and time profiles of ultrasonic pulses transmitted through samples of marble of various thicknesses in which the most part of the characteristic grain sizes lies in the range of 500 μm - 1 mm are constructed. It has been established that, according to the amplitude spectrum of the original signal and the transmitted through the sample signal, it is possible to restore the characteristic dimensions of the grains.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

212-218

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Chengbo Yu, Shaocheng Ji, Qi Li. Effects of porosity on seismic velocities, elastic moduli and Poisson's ratios of solid materials and rocks. Journal of Rock Mechanics and Geotechnical Engineering, Volume 8, Issue 1, February 2016, Pages 35-49.

DOI: 10.1016/j.jrmge.2015.07.004

Google Scholar

[2] İsmail H. Sarpün, M. Selami Kılıçkaya, Sabri Tuncel. Mean grain size determination in marbles by ultrasonic velocity techniques. NDT & E International, Volume 38, Issue 1, January 2005, Pages 21-25.

DOI: 10.1016/j.ndteint.2004.06.009

Google Scholar

[3] L.L. Panasyan, T.V. Posukhova, E.B. Cherepetskaya, Zhang Jini. Mineralogical, petrophysical, and acoustic features of serpentinites, indicators of the paleodynamic conditions of their genesis (by the example of the Main Uralian Fault zone). Russian Geology and Geophysics, Volume 55, Issue 12, December 2014, Pages 1461-1470.

DOI: 10.1016/j.rgg.2014.11.010

Google Scholar

[4] Lingtao Mao, Jianping Zuoa, Zexun Yuana, Fu-Pen Chiangb. Full-field mapping of internal strain distribution in red sandstone specimen under compression using digital volumetric speckle photography and X-ray computed tomography. Journal of Rock Mechanics and Geotechnical Engineering. Volume 7, Issue 2, April 2015, Pages 136–146.

DOI: 10.1016/j.jrmge.2015.01.003

Google Scholar

[5] Adam J., Schreurs G., Kinkmuller M., Wieneke M. 2D/3D strain localization and fault simulation in analogue experiments: insights from X-ray computed tomography and tomographic image correlation. Bolletino di Geofisica Teorica ed Applicata. 2008, 49 (Supp. 2): 21–2.

Google Scholar

[6] A. Kravcov, P. Svoboda, A. Konvalinka, E. B. Cherepetskaya, I.E. Sas, N. A. Morozov, J. Zatloukal, J. Koťátková. Evaluation of Crack Formation in Concrete and Basalt Specimens under Cyclic Uniaxial Load Using Acoustic Emission and Computed X-Ray Tomography. Key Engineering Materials. Volume 722, pp.247-253 (2017).

DOI: 10.4028/www.scientific.net/kem.722.247

Google Scholar

[7] Grischkowsky, D.; Keiding, Søren; Exter, Martin van; Fattinger, Ch. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. Journal of the Optical Society of America B 7 (10): (2006).

DOI: 10.1364/josab.7.002006

Google Scholar

[8] Mikhail Esaulkov, Petr Solyankin, Artem Sidorov, Lyubov Parshina, Artem Makarevich, Qi Jin, Qin Luo, Oleg Novodvorsky, Andrey Kaul, Elena Cherepetskaya, Alexander Shkurinov, Vladimir Makarov, and Xi-Cheng Zhang. Emission of terahertz pulses from vanadium dioxide films undergoing metal–insulator phase transition, 2, № 9(2015).

DOI: 10.1364/optica.2.000790

Google Scholar

[9] S. Titto, M. Otala, S. Säynäjäkangas. Non-destructive magnetic measurement of steel grain size. Non-Destructive Testing. Volume 9, Issue 3, June 1976, Pages 117-120.

DOI: 10.1016/0029-1021(76)90239-5

Google Scholar

[10] Chenxin Zhanga, Xiongbing Lia, Yongfeng Songa, Xiaoqin Hana, Jun Hanb. Evaluating the grain size in curved components using the ultrasonic attenuation method with diffraction correction. NDT & E International. Volume 84, December 2016, Pages 20–26.

DOI: 10.1016/j.ndteint.2016.07.004

Google Scholar

[11] V. A. Burov, P. I. Darialashvili, S. N. Evtukhov, O. D. Rumyantseva. New Informative Possibilities of Active-Passive Thermoacoustic Tomography. Acoust. Imaging. Ed. W. Arnold and S. Hirsekorn, 2004, 27, P. 305-313.

DOI: 10.1007/978-1-4020-2402-3_39

Google Scholar

[12] A. Kravcov, P. Svoboda, A. Konvalinka, E. B. Cherepetskaya, A. A. Karabutov, D. V. Morozov, I. A. Shibaev. Laser-Ultrasonic Testing of the Structure and Properties of Concrete and Carbon Fiber-Reinforced Plastics. Key Engineering Materials. Vol. 722, pp.267-272, (2017).

DOI: 10.4028/www.scientific.net/kem.722.267

Google Scholar

[13] A. A. Karabutov, E.B. Cherepetskaya, N. B. Podymova. Laser-ultrasonic measurement of local elastic moduli. VIIIth International Workshop NDT in Progress, Oct 12-14 (2015).

Google Scholar

[14] N. B. Podymova, A. A. Karabutov and E. B. Cherepetskaya. Laser optoacoustic method for quantitative nondestructive evaluation of the subsurface damage depth in ground silicon wafers. Laser Physics, 24, 8 (2014), 086003.

DOI: 10.1088/1054-660x/24/8/086003

Google Scholar

[15] Stanke F.E., Kino G.S. A Unified Theory for Elastic Wave Propagation in Polycrystalline Materials. The Journal of the Acoustical Society of America. Volume 75, P. 234-238. March (1984).

DOI: 10.1121/1.390577

Google Scholar

[16] K. Goebbels, S. Hirsekorn. A new ultrasonic method for stress determination in textured materials. NDT International. Volume 17, Issue 6, December 1984, Pages 337-341.

DOI: 10.1016/0308-9126(84)90142-1

Google Scholar

[17] D. Dobrovolskij, S. Hirsekorn, Martin Spies. Simulation of Ultrasonic Materials Evaluation Experiments Including Scattering Phenomena due to Polycrystalline Microstructure. Physics Procedia, 70 (2015) 644-647.

DOI: 10.1016/j.phpro.2015.08.066

Google Scholar