A Version of the Failure Criterion Modification for Plane Concrete

Article Preview

Abstract:

The paper is about the generally accepted in the deformable solid mechanics principles of constructing limiting surfaces of concrete strength in the principal stress space. The background and theoretical approaches taken by different researchers to describe the functions of deviatoric and meridional curves as the basic elements which determine the surface configuration of concrete strength were analyzed.There was carried out a comparative analysis of different authors’ suggestions on an analytic description of concrete strength for different stress states and a comparison of the developed criteria and the results of short-term tests of plane concrete under multiaxial loadings. Comparing the methods taken for developing the interpolation functions of deviatoric and meridional curves, it was inferred that the application of different approaches to the development of concrete failure criteria is effective. Keeping in mind the results of the comparative analysis of the prerequisites taken to develop the above failure criteria and the requirements of a better approximation of the experimental data, there are made new suggestions to describe concrete strength for the general case of stress state.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

300-321

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Alikova N.М., Geniev G.А. A version of the failure criterion for concrete (Вариант условия прочности бетона). In Bulletin of Theoretical researches in the area of structural mechanics spatial systems (Теоретические исследования в области строительной механики пространственных систем). Мoscow, 1976. – pp.21-27.

Google Scholar

[2] Balan Т.А. A version of the failure criterion for structurally non-uniform materials under complex stress state (Вариант критерия прочности структурно-неоднородных материалов при сложнонапряженном состоянии). Strength problems, Vol. 2, 1986. pp.21-26.

Google Scholar

[3] Bambura A.N. Development of methods for estimation of the stress-strain state and bearing capacity of reinforced concrete structures based on real deformational diagrams of materials. (Развитие методов оценки напряженно-деформированного состояния и несущей способности железобетонных конструкций на основе реальных диаграмм деформирования материалов). In Proc. of 1st Ukrainian scientific-technical conference Theoretical and practical problems of up-to-date reinforced concrete, 1996, Kiev, Ukraine, pp.36-39.

Google Scholar

[4] Berg О. Ya., Smirnov N.V. About strength of concrete under biaxial compression (О прочности бетона при двухосном сжатии). Concrete and reinforced concrete. Vol. XI, 1965, pp.37-39. (in Russian).

DOI: 10.12737/23890

Google Scholar

[5] Bich P.М. A version of the strength theory for concrete (Вариант теории прочности бетона). Concrete and reinforced concrete. Vol. VI, 1980, pp.28-29. (in Russian).

Google Scholar

[6] Busler L.A. Rupture of concrete in biaxial tension-compression conditions. (Разрушение бетона в условиях двухосного сжатия-растяжения). In Bulletin of The new researches in technology, calculation and design of reinforced concrete structures. Ed. by Krylov B.A. and Korovin N.N., NIIZHB, Moscow, 1980. pp.9-15.

Google Scholar

[7] Verigin K.P. Resistance of concrete to rupture under simultaneous action of uniaxial tension and compression. (Сопротивление бетона разрушению при одновременном действии осевого растяжения и сжатия). Concrete and reinforced concrete. Vol. II, 1956, pp.64-67.

Google Scholar

[8] Gvozdev A.A., Bich P.М. The strength of concrete under biaxial stress state. (Прочность бетона при двухосном напряженном состоянии ). Concrete and reinforced concrete. Vol. VII, 1974, pp.10-11. (in Russian).

Google Scholar

[9] Geniev G.А., Kyssuk V.N., Tiupin G.A. Theory of plasticity of concrete and reinforced concrete. (Теория пластичности бетона и железобетона). Moscow: Strojizdat, 1974. 316 p. (in Russian).

Google Scholar

[10] Karpenko N.I. Towards development of concrete failure criterion ander multiaxial stress state (К построению условия прочности бетонов при неодноосных напряженных состояниях). Concrete and reinforced concrete. Vol. X, 1985, pp.35-37. (in Russian).

Google Scholar

[11] Klovanic S.F., Mironenko I.N. The finite elements method in reinforced concrete mechanics. (Метод конечных элементов в механике железобетона). Odessa, 2007. 111 p. (in Russian).

Google Scholar

[12] Klovanic S.F., Bezushko D.I. The Numerical experiment for deformational theories of plasticity of concrete research. (Численный эксперимент по исследованию деформационных теорий пластичности бетона). In Bulletin of OSACEA, Vol. 22, 2006. pp.122-130.

Google Scholar

[13] Kulik I.I. The strength of concrete under plane compression-tension. (Прочность бетона при плоском сжатии-растяжении). In Bulletin of The issues of construction and architecture. Vol. VII, Minsk, 1977. pp.92-98. (in Russian).

Google Scholar

[14] Kucher N.К., Kucher V.N. A version of the Filonenko-Borodic failure criterion for structurally non-uniform materials. (Вариант критерия прочности Филоненко-Бородича для структурно-неоднородных материалов). In Bulletin of National technical university of Ukraine Kiev polytechnic institute, for mechanical engineering series, Vol. 63, 2011. pp.288-291.

Google Scholar

[15] Leites Е.S. Towards to more precise definition of one concrete failure criterion. (К уточнению одного из условий прочности бетона). In Bulletin of The behavior of concretes and reinforced concrete members under different term actions. Ed. by Gvozdev A.A. and Krylov B.A., NIIZHB, Moscow, 1980. pp.37-40.

Google Scholar

[16] Lifschits М.B. Accounting the type of stress state in concrete failure criterion. (Учет вида напряженного состояния в критерии прочности бетона). In Bulletin of Building structures for transportation and general purposes, Vol. 202/12, Novosibirsk, 1979. pp.20-29.

Google Scholar

[17] Pervakov V.N. А Strength of plane concrete under triaxial stress state of tension-compression-compression". (Прочность тяжелого бетона при трехосном напряженном состоянии "растяжение-сжатие-сжатие, ). In Bulletin of The new in technology, calculation and design of reinforced concrete structures. Ed. by Krylov B.A. and Korovin N.N., NIIZHB, Moscow, 1984. pp.90-96.

DOI: 10.23968/1999-5571-2018-15-2-74-77

Google Scholar

[18] Yashin A.V. The failure and deformational criteria of concrete in simple loading for the various types of stress state. (Критерии прочности и деформирования бетона при простом нагружении для различных видов напряженного состояния). In Bulletin of Analysis and design of reinforced concrete structures. Ed. by Gvozdev A. A, NIIZHB, Moscow, 1977. pp.48-57.

Google Scholar

[19] Yashin A.V. Micromechanics of rupture under complex (multiaxial) stress states. (Микромеханика разрушения при сложных (многоосных) напряженных состояниях). In Bulletin of The strengths and deformational features of members of the concrete and reinforced concrete structures. Ed. by Gvozdev A. A, NIIZHB, Moscow, 1981. pp.3-29.

Google Scholar

[20] Drucker D.C. Soil mechanics and plastic analysis for limit design. Quart. Appl. Math. Vol. 10(2), 1952. pp.157-165.

DOI: 10.1090/qam/48291

Google Scholar

[21] Hansen T.C. Triaxial test with concrete and cement paste. Report of Technical University of Denmark, 1995. p.54.

Google Scholar

[22] Hsieh S.S. A plastic-fracture model for concrete. Int. Journal Solids Structures. Int. Journal Solids Structures, Vol. 18(3), 1982. pp.181-197.

DOI: 10.1016/0020-7683(82)90001-4

Google Scholar

[23] Kupfer H. Behavior of Concrete Under Biaxial Stress. ACI Journal, 1969. pp.656-666.

Google Scholar

[24] Liu T.C.Y., Nilson, F.O. Stress-Strain Response of Concrete in Uniaxial and Biaxial Compression. ACI Journal, 1972. pp.291-295.

Google Scholar

[25] Mills L.L., M. Zimmerman. Compressive Strength of Plain Concrete Under Multiaxial Loading Conditions. ACI Journal, 1970. pp.802-807.

DOI: 10.14359/7310

Google Scholar

[26] Seow P., S. Swaddiwudhipong. Failure surface for concrete under multiaxial load. Jornal Materials Civil Engineering, Vol. 17(2), 2005. pp.219-218.

DOI: 10.1061/(asce)0899-1561(2005)17:2(219)

Google Scholar

[27] Tan T.H. Effects of triaxial stress on concrete. Proc. of 30th Conference on our world in concrete & structures, Singapore, (2005).

Google Scholar

[28] Tasuji M.E. Stress-Strain Response and Fracture of Concrete in Biaxial Loading. ACI Journal, 1978. pp.306-312.

Google Scholar

[29] Torrent R.J., Drovkin E.N., Alvaredo A.M., Torrent R.J. A model for work-hardening plasticity and failure of concrete under multiaxial stresses. Cement and concrete research, Vol. 17, 1987. pp.939-950.

DOI: 10.1016/0008-8846(87)90082-2

Google Scholar

[30] Van Geel E. Concrete behavior in multiaxial compression. Ph.D. Thesis, Technische Universiteit of Eindhoven, The Netherlands, (1998).

Google Scholar

[31] Wang H.L. Behavior of mass concrete under biaxial compression-tension and triaxial compression-compression-tension. Materials and Structures, Vol. 42, 2009. pp.241-249.

DOI: 10.1617/s11527-008-9381-y

Google Scholar

[32] Willam K.J. Warnke E.P. Constitutive model for the triaxial behavior of concrete. Int. Assoc. Bridge. Struct. Eng. Proc, Vol. 19, 1974. p.1–31.

Google Scholar

[33] Zielinski A.J. Concrete under biaxial loading: static compression-impact tension. Report N5-85-1 of Technische Hogescholl Delft, Delft, (1985).

Google Scholar