Zeolite as Nanomaterial for Water Treatment in a Production Exploitation

Article Preview

Abstract:

A new technologies and materials stand at front of thescientific interest. Their development leads to technological potential increasing at various fields of industry.Progressive new materials are based on the development of nanotechnologies and nanomaterials, which have a widerange of the applications in manufacturing, medicine and the environment protection. There sult of the hugeefforts in the development of nanostructured materials, the amount of new material sthat are the building blocks of nanoparticles with defineds tructures and properties. Progress in the use of nanotechnologies and nanomaterials has been noticed in the area of water protection, because they develop a modern, economically viable and environmentally more acceptable sewage processes and materials. At this sphere new zeolite products are developing with modified external surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-51

Citation:

Online since:

September 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Khunová, Polymer nanocomposites (Polymérne nanokompozity), in: Secrets of Chemistry Revealed (Odhalené tajomstvá chémie), SAV VEDA, Bratislava, 2007. (in Slovak).

Google Scholar

[2] P. Klusoň, M. Drobek, H. Bartková, I. Budil, Welcome to the nanoworld, (Vitajte v nanosvete), Chem. Listy 101 (2007) 262-272. (in Slovak).

Google Scholar

[3] A. Panda et al., Roller bearings and analytical expression of selected cutting tools durability in machining process of steel 80MoCrV4016, Applied Mechanics and Materials 415 (2013) 610-613.

DOI: 10.4028/www.scientific.net/amm.415.610

Google Scholar

[4] A. Panda et al., Analytical expression of T-vc dependence in standard ISO 3685 for cutting ceramic, Key Engineering Materials 480-481 (2011) 317-322.

DOI: 10.4028/www.scientific.net/kem.480-481.317

Google Scholar

[5] A. Panda, J. Jurko, J. Valíček, M. Harničárová, I. Pandová, Study on cone roller bearing surface roughness improvement and the effect of surface roughness on tapered roller bearing service life, International Journal of Advanced Manufacturing Technology 82/5-8 (2016).

DOI: 10.1007/s00170-015-7449-8

Google Scholar

[6] A. Panda, J. Jurko, M. Džupon, I. Pandová, Optimalization of heat treatment bearings rings with goal to eliminate deformation of material, Chemické listy 105/16 (2011) 459-461.

Google Scholar

[7] A. Panda, J. Jurko, I. Pandová, Monitoring and Evaluation of Production Processes - An Analysis of the Automotive Industry. Springer Int. Publishing, Switzerland, 2016, 117 p.

Google Scholar

[8] M. Prislupčák, A. Panda, Comparsion and Analysis of the Flow Rate, Key Engineering Materials 663-696 (2016) 197-204.

Google Scholar

[9] T. Krenický, Virtual instrumentation as a tool of automated monitoring of operational parameters of technical systems (Virtuálna inštrumentácia ako nástroj automatizovaného monitoringu prevádzkových parametrov technických systémov), in: Proc. of Int. Workshop ARTEP 2010, February 24-26, 2010, Stará Lesná, Slovakia; Košice, TUKE, 2010, p.49.

Google Scholar

[10] T. Zaborowski, Ekowytwarzanie, Gorzow, Poland, 2007, 100 p.

Google Scholar

[11] L. Sabová, E. Chmielewská, K. Gáplovská, Preparation and use of combined adsorbents zeolite base at removing oxianionic pollutants from waters (Príprava a využitie kombinovaných adsorbentov na zeolitovej báze pri odstraňovaní oxy-aniónových polutantov z vôd), Chem. Listy 104 (2010).

Google Scholar

[12] M. Főldesová, P. Hudec, Study of surface properties of Slovak natural zeolite – clinoptilolite by physical nitrogen adsorption. Petroleum & Coal 49/1 (2007) 34-40.

Google Scholar

[13] P. Hudec, J. Novanský, Š. Morávek, Z. Židek, Influence of various mordenite modification on its physico-chemical and catalytic properties, 5th Italo-Czechoslovak Symposium on Catalysis, San Remo, Italy Sep. 28-Oct. 1, 1987, pp.96-99.

DOI: 10.1135/cccc19920845

Google Scholar

[14] M. Főldesová, P. Dillinger, P. Lukáč, Š. Svetlík, Effect of calnication and chemical modification of the structure of natural zeolites (Vplyv kalcinácie a chemickej modifikácie na štruktúru prírodných zeolitov), Book of Abstr. XVI Conf. on Thermal Analysis and Calorimetry TERMANAL 2003, PO-6, Stará Lesná, Slovakia, Oct. (2003).

Google Scholar

[15] Y. Zhang, F. Chen, J. Zhuang et al., Synthesis of Silver Nanopartlicles via Electrochemical Reduction on Compact Zeolite Film Modified Electrodes, Chem. Commun. 23 (2002) 2814-2815.

Google Scholar

[16] M. Matik, M. Václavíková, S. Hredzák, M. Lovás, Š. Jakabský, Possibility of modifying the zeolite iron oxides and its use in the removal Pb +2 from aqueous solutions (Možnosti modifikácie zeolitu oxidmi železa a jeho využitia pri odstraňovaní Pb2+ z vodných roztokov), Acta Montanistica Slovaca 9/4 (2004).

Google Scholar

[17] A.B. Bourlinos, R. Zboril R.D. Petridis, Simpler out etowards magnetically modified zeolites, Microporous and Mesoporous Materials 58 (2003) 155-162.

DOI: 10.1016/s1387-1811(02)00613-3

Google Scholar

[18] S.E. Lehman, C. Sarah S.C. Larsen, Zeolite and mesoporous silica nanomaterials: greener syntheses, environmental applications and biological toxicity, Envir. Sci.: Nano 1 (2014) 200-213.

DOI: 10.1039/c4en00031e

Google Scholar

[19] M.M. Khin, A.S. Nair, V.J. Babu, R. Mutugan, S. Ramakrihna, A review on nanomaterials for environmental remediation, Energy Environn. Sci. 5 (2007) 8075-8109.

Google Scholar

[20] E. Chmielewská, Z. Bedrna, Hazardous Substances and Environmental Hazards (Rizikové látky a environmentálne hazardy). 114, Vyd. CICERO, Bratislava, 2007. (in Slovak).

Google Scholar