[1]
A. Panda, J. Jurko, I. Pandová, Monitoring and Evaluation of Production Processes. An Analysis of the Automotive Industry, Springer International Publishing, Switzerland, 2016, 117 p.
Google Scholar
[2]
L. Novakova-Marcincinova, J. Novak-Marcincin, Production of composite material by FDM rapid prototyping technology, Applied Mechanics and Materials 474 (2014) 186-191.
DOI: 10.4028/www.scientific.net/amm.474.186
Google Scholar
[3]
J. Jurko, A. Panda, M. Behún, Prediction of a new form of the cutting tool according to achieve the desired surface quality, Applied Mechanics and Materials 268 (2013) 473-476.
DOI: 10.4028/www.scientific.net/amm.268-270.473
Google Scholar
[4]
L. Novakova-Marcincinova, J. Novak-Marcincin, Production of ABS-Aramid Composite Material by Fused Deposition Modeling Rapid Prototyping System, Manufacturing Technology 14/1 (2014) 85-91.
DOI: 10.21062/ujep/x.2014/a/1213-2489/mt/14/1/85
Google Scholar
[5]
L. Novakova-Marcincinova, J. Novak-Marcincin, Rapid prototyping in developing process with CA systems application, Applied Mechanics and Materials 464 (2014) 399-405.
DOI: 10.4028/www.scientific.net/amm.464.399
Google Scholar
[6]
L. Novakova-Marcincinova, J. Novak-Marcincin, Testing of ABS Material Tensile Strength for Fused Deposition Modeling Rapid Prototyping Method, Advanced Materials Research 912-914 (2014) 370-373.
DOI: 10.4028/www.scientific.net/amr.912-914.370
Google Scholar
[7]
L. Novakova-Marcincinova, J. Novak-Marcincin, Selected Testing for Rapid Prototyping Technology Operation, Applied Mechanics and Materials 308 (2013) 25-31.
DOI: 10.4028/www.scientific.net/amm.308.25
Google Scholar
[8]
A. Panda, M. Prislupčák, I. Pandová, Progressive technology diagnostic and factors affecting to machinability, Applied Mechanics and Materials 616 (2014) 183-190.
DOI: 10.4028/www.scientific.net/amm.616.183
Google Scholar
[9]
M. Prislupčák, A. Panda, M. Jančík, I. Pandová, P. Orendáč, T. Krenický, Diagnostic and experimental valuation on progressive machining unit, Applied Mechanics and Materials 616 (2014) 191-199.
DOI: 10.4028/www.scientific.net/amm.616.191
Google Scholar
[10]
L. Novakova-Marcincinova, I. Kuric, Basic and Advanced Materials for Fused Deposition Modeling Rapid Prototyping Technology, Manuf. and Industrial Engineering 11 (2012) 24-27.
Google Scholar
[11]
M. Plancak, Rapid Prototyping and Rapid Tooling, FTN University of Novi Sad, Novi Sad, 2009, 164 p.
Google Scholar
[12]
I. Pandová, Nitrogen oxides reduction by zeolite sorbents in manufacturing use, Advanced Materials Research 937 (2014) 487-490.
DOI: 10.4028/www.scientific.net/amr.937.487
Google Scholar
[13]
I. Pandová, Manufacturing technologies in automotive production and waste water cleaning on zeolite in view of copper, MM Science Journal 2016 (2016) 1218-1221.
DOI: 10.17973/mmsj.2016_11_201648
Google Scholar
[14]
J. Peterka, P. Pokorný, Influence of the Lead Angle from the Vertical Axis Milling on Effective Radiu sof the Cutter, Key Engineering Materials 581 (2014) 44-49.
DOI: 10.4028/www.scientific.net/kem.581.44
Google Scholar
[15]
I. Leššo, P. Flegner, J. Futó, Z. Sabová, Utilization of signal spaces for improvement of efficiency of metallurgical process, Metalurgija 53 (2014) 75-77.
Google Scholar
[16]
J. Brezinová, A. Guzanová, E. Spišák, Assessment of properties thermal sprayed coatings realised using cermet blend powder, Metalurgija 53/4 (2014) 661-664.
Google Scholar
[17]
M. Gombár, A. Vagaská, J. Kmec, P. Michal, Microhardness of the Coatings Created by Anodic Oxidation of Aluminium, Applied Mechanics and Materials 308 (2013) 95-100.
DOI: 10.4028/www.scientific.net/amm.308.95
Google Scholar
[18]
K. Monková, P. Monka, D. Jakubeczyová, The research of the high speed steels produced by powder and casting metallurgy from the view of tool cutting life, Applied Mechanics and Materials 302 (2013) 269-274.
DOI: 10.4028/www.scientific.net/amm.302.269
Google Scholar
[19]
J. Janekova, J. Kovac, D. Onofrejova, Modelling of Production Lines for Mass Production of Sanitary Products, Procedia Engineering 96 (2014) 330-337.
Google Scholar
[20]
Š. Olejárová, R. Kreheľ, M. Pollák, M. Kočiško, Research on impacts of mechanical vibrations on the production machine to its rate of change of technical state, Advances in mechanical engineering 8/7 (2016) 1-10.
DOI: 10.1177/1687814016655778
Google Scholar
[21]
Ľ. Straka, I. Čorný, R. Kreheľ, Evaluation of Capability of Measuring Device on the Basis of Diagnostics, Applied Mechanics and Materials 308 (2013) 69-74.
DOI: 10.4028/www.scientific.net/amm.308.69
Google Scholar
[22]
A. Panda et al., Roller bearings and analytical expression of selected cutting tools durability in machining process of steel 80MoCrV4016, Applied Mechanics and Material 415 (2013) 610-613.
DOI: 10.4028/www.scientific.net/amm.415.610
Google Scholar
[23]
A. Panda et al., Analytical expression of T-vc dependence in standard ISO 3685 for cutting ceramic, Key Engineering Materials 480-481 (2011) 317-322.
DOI: 10.4028/www.scientific.net/kem.480-481.317
Google Scholar
[24]
A. Panda, J. Jurko, J. Valíček, M. Harničárová, I. Pandová, Study on cone roller bearing surface roughness improvement and the effect of surface roughness on tapered roller bearing service life, Int. J. of Advanced Manufacturing Technology 82/5-8 (2016).
DOI: 10.1007/s00170-015-7449-8
Google Scholar
[25]
A. Panda, J. Jurko, M. Džupon, I. Pandová, Iveta, Optimalization of heat treatment bearings rings with goal to eliminate deformation of material, Chemické listy 105/16 (2011) 459-461.
Google Scholar
[26]
P. Michalik, J. Zajac, M. Hatala, D. Mitaľ, V. Fečová, Monitoring surface roughness oft hin-walled components from steel C45 machining down and up milling, Measurement 58 (2014) 416-428.
DOI: 10.1016/j.measurement.2014.09.008
Google Scholar
[27]
T. Krenický, Implementation of Virtual Instrumentation for Machinery Monitoring, in: Scientific Papers: Operation and Diagnostics of Machines and Production Systems Operational States: Vol. 4, RAM-Verlag, Lüdenscheid, 2011, pp.5-8.
Google Scholar
[28]
T. Krenický, Non-contact Study of Surfaces Created Using the AWJ Technology, Manufacturing Technology 15/1 (2015) 61-64.
DOI: 10.21062/ujep/x.2015/a/1213-2489/mt/15/1/61
Google Scholar
[29]
I. Vojtko, V. Simkulet, P. Baron, I. Orlovský, Microstructural Characteristics Investigation of the Chip-Making Process after Machining, Applied Mechanics and Materials 616 (2014) 344-350.
DOI: 10.4028/www.scientific.net/amm.616.344
Google Scholar
[30]
E. Ragan, J. Dobránsky, P. Baron, M. Kočiško, J. Svetlík, Dynamic of taking out molding parts at injection molding, Metallurgy 51/4 (2012) 567-570.
Google Scholar
[31]
Š. Álló, V. Kročko, M. Korenko, Z. Andrássyová, D. Foldešiová, Effect of chemical degreasing on corrosion stability of components in automobile industry, Advanced Materials Research 801 (2013) 19-23.
DOI: 10.4028/www.scientific.net/amr.801.19
Google Scholar
[32]
T. Krenický, P. Jacko, Simultaneous temperature monitoring using virtualization, in: Scientific Papers: Operation and diagnostics of machines and production systems operational states. Lüdenscheid: RAM-Verlag, 2009, pp.58-62.
Google Scholar
[33]
R. Cep, A. Janásek, J. Petru et al., Surface roughness after machining and influence of feed rate on process, Key Engineering Materials 581 (2014) 341-347.
DOI: 10.4028/www.scientific.net/kem.581.341
Google Scholar