Sophisticated Production from Organic PLA Materials Processed Horizontally by Fused Deposition Modeling Method

Article Preview

Abstract:

The article focuses on the samples production of organic material PLA-PolyLacticAcid – bioplastic. The main part describes the experimental testing of PolyLacticAcid plastic and sample production by Fused Deposition Modeling, Rapid Prototyping technology. The article presents selected carried out tests of mechanical properties focused mainly on the determination of ultimate tensile strength of two PLA-BIO plastic extruded horizontally along the width produced by FDM method, Rapid Prototyping. The authors of this article present their results of test materials in the form of measurement protocols recorded in software, the measured values in a static tensile test, recorded in tables and shown in work graphs. Based on the results of the two samples produced from PLA biomaterials and compared to determine which PLA – bioplastic is stronger.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

88-95

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Panda, J. Jurko, I. Pandová, Monitoring and Evaluation of Production Processes. An Analysis of the Automotive Industry, Springer International Publishing, Switzerland, 2016, 117 p.

Google Scholar

[2] L. Novakova-Marcincinova, J. Novak-Marcincin, Production of ABS-Aramid Composite Material by Fused Deposition Modeling Rapid Prototyping System, Manufacturing Technology 14/1 (2014) 85-91.

DOI: 10.21062/ujep/x.2014/a/1213-2489/mt/14/1/85

Google Scholar

[3] J. Jurko, A. Panda, M. Behún, Prediction of a new form of the cutting tool according to achieve the desired surface quality, Applied Mechanics and Materials 268 (2013) 473-476.

DOI: 10.4028/www.scientific.net/amm.268-270.473

Google Scholar

[4] L. Novakova-Marcincinova, J. Novak-Marcincin, Production of composite material by FDM rapid prototyping technology, Applied Mechanics and Materials 474 (2014) 186-191.

DOI: 10.4028/www.scientific.net/amm.474.186

Google Scholar

[5] L. Novakova-Marcincinova, J. Novak-Marcincin, Rapid prototyping in developing process with CA systems application, Applied Mechanics and Materials 464 (2014) 399-405.

DOI: 10.4028/www.scientific.net/amm.464.399

Google Scholar

[6] L. Novakova-Marcincinova, J. Novak-Marcincin, Testing of ABS Material Tensile Strength for Fused Deposition Modeling Rapid Prototyping Method, Advanced Materials Research 912-914 (2014) 370-373.

DOI: 10.4028/www.scientific.net/amr.912-914.370

Google Scholar

[7] L. Novakova-Marcincinova, J. Novak-Marcincin, Selected Testing for Rapid Prototyping Technology Operation, Applied Mechanics and Materials 308 (2013) 25-31.

DOI: 10.4028/www.scientific.net/amm.308.25

Google Scholar

[8] L. Novakova-Marcincinova, Description of Materials Used in Fused Deposition Modeling Technology, Manufacturing Engineering and Technology 2 (2011) 7-10.

Google Scholar

[9] L. Novakova-Marcincinova, I. Kuric, Basic and Advanced Materials for Fused Deposition Modeling Rapid Prototyping Technology, Manufacturing and Industrial Engineering 11/1 (2012) 24-27.

Google Scholar

[10] L. Novakova-Marcincinova, J. Novak-Marcincin, Testing of Materials for Rapid Prototyping Fused Deposition Modelling Technology, World Academy of Science, Engineering and Technology 70 (2012) 411-414.

DOI: 10.4028/www.scientific.net/amr.740.597

Google Scholar

[11] A. Panda, M. Prislupčák, I. Pandová, Progressive technology diagnostic and factors affecting to machinability, Applied Mechanics and Materials 616 (2014) 183-190.

DOI: 10.4028/www.scientific.net/amm.616.183

Google Scholar

[12] M. Prislupčák, A. Panda, M. Jančík, I. Pandová, P. Orendáč, T. Krenický, Diagnostic and experimental valuation on progressive machining unit, Applied Mechanics and Materials 616 (2014) 191-199.

DOI: 10.4028/www.scientific.net/amm.616.191

Google Scholar

[13] M. Plancak, Rapid Prototyping and Rapid Tooling, FTN University of Novi Sad, Novi Sad, 2009, 164 p.

Google Scholar

[14] J. Novak-Marcincin, M. Janak, L. Novakova-Marcincinova, Increasing of Product Quality Produced by Rapid Prototyping Technology, Manufacturing Technology 12 (2012) 71-75.

DOI: 10.21062/ujep/x.2012/a/1213-2489/mt/12/1/71

Google Scholar

[15] A. Panda et al., Roller bearings and analytical expression of selected cutting tools durability in machining process of steel 80MoCrV4016, Applied Mechanics and Material 415 (2013) 610-613.

DOI: 10.4028/www.scientific.net/amm.415.610

Google Scholar

[16] A. Panda et al., Analytical expression of T-vc dependence in standard ISO 3685 for cutting ceramic, Key Engineering Materials 480-481 (2011) 317-322.

DOI: 10.4028/www.scientific.net/kem.480-481.317

Google Scholar

[17] A. Panda, J. Jurko, J. Valíček, M. Harničárová, I. Pandová, Study on cone roller bearing surface roughness improvement and the effect of surface roughness on tapered roller bearing service life, Int. J. of Advanced Manufacturing Technology 82/5-8 (2016).

DOI: 10.1007/s00170-015-7449-8

Google Scholar

[18] A. Panda, J. Jurko, M. Džupon, I. Pandová, Iveta, Optimalization of heat treatment bearings rings with goal to eliminate deformation of material, Chemické listy 105/16 (2011) 459-461.

Google Scholar

[19] I. Pandová, Nitrogen oxides reduction by zeolite sorbents in manufacturing use, Advanced Materials Research 937 (2014) 487-490.

DOI: 10.4028/www.scientific.net/amr.937.487

Google Scholar

[20] I. Pandová, Manufacturing technologies in automotive production and waste water cleaning on zeolite in view of copper, MM Science Journal 2016 (2016) 1218-1221.

DOI: 10.17973/mmsj.2016_11_201648

Google Scholar

[21] I. Mrkvica, M. Janoš, P. Sysel, Cutting efficiency by drilling with tools from different materials, Advanced Materials Research538-541 (2012) 1327-1331.

DOI: 10.4028/www.scientific.net/amr.538-541.1327

Google Scholar

[22] T. Krenický, Implementation of Virtual Instrumentation for Machinery Monitoring, in: Scientific Papers: Operation and Diagnostics of Machines and Production Systems Operational States: Vol. 4, RAM-Verlag, Lüdenscheid, 2011, pp.5-8.

Google Scholar

[23] M. Rimár, P. Šmeringai, M. Fedák, Š. Kuna, Technical and software equipment for the real time positioning control system in mechatronic systems with pneumatic artificial muscles, Key Engineering Materials 669 (2016) 361-369.

DOI: 10.4028/www.scientific.net/kem.669.361

Google Scholar

[24] T. Krenický, P. Jacko, Real-time monitoring of technical systems operation (Real-time monitoring prevádzky technických systémov), Strojárstvo Extra 5 (2011) 32/1-32/2. (in Slovak).

Google Scholar

[25] A. Czan, M. Sajgalik, A. Martikan, Observation of dynamic processes in cutting zone when machining nickel alloys, Komunikacie 16/3A (2015) 161-168.

DOI: 10.26552/com.c.2014.3a.161-168

Google Scholar

[26] I. Leššo, P. Flegner, M. Šujanský, E. Špak, Research of the possibility of application of vector quantisation method for effective process control of rocks sisintegration by rotary drilling, Metalurgija 49/1 (2010) 61-65.

Google Scholar

[27] T. Zaborowski, Ekowytwarzanie, Gorzow, 2007, 100 p.

Google Scholar

[28] M. Zelenak et al., Comparison of mechanical properties of surface layers with use of nanoindentation and microindentation tests, Metalurgija 51/3 (2012) 309-312.

Google Scholar