Research of the Basic Physical Regularities of Material Removal in Electrical Discharge Machining of Tool Steel

Article Preview

Abstract:

The paper describes the basic physical regularities of material removal in Electrical discharge machining (EDM) of tool steel. One of the parameters, that material removal regularities quite accurately identifies, is the tool wear rate (TWR). This parameter, however, describes only the regularities concerning the tool electrode wear. More complex parameter for assessing regularities of material removal in EDM is thus electrode wear ratio (EWR). This parameter, except the size of the wear of the tool electrode, also describes the size of the workpiece material removal. Research on material removal was carried out on samples made out of tool steel EN X32CrMoV12-28 using Cu-ETP electrode EN CW004A. Aim of this paper was also based on the selection of main process parameters that significantly influence the material removal in EDM to define the individual specifics with regard to minimizing EWR.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

96-106

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Hašová, Ľ. Straka, Design and verification of software for simulation of selected quality indicators of machined surface after WEDM, Acad. J. of Manuf. Engineering 14/2 (2016) 13-20.

Google Scholar

[2] A. Panda, M. Prislupčák, I. Pandová, Progressive technology diagnostic and factors affecting to machinability, Applied Mechanics and Materials 616 (2014) 183-190.

DOI: 10.4028/www.scientific.net/amm.616.183

Google Scholar

[3] R. Kreheľ, Ľ. Straka, T. Krenický, Diagnostics of production systems operation based on thermal processes evaluation, Applied Mechanics and Materials 308 (2013) 121-126.

DOI: 10.4028/www.scientific.net/amm.308.121

Google Scholar

[4] I. Čorný, Possibilities of application of computational intelligence in monitoring of heat production and supply, Key Eng. Mat. 669 (2016) 560-567.

DOI: 10.4028/www.scientific.net/kem.669.560

Google Scholar

[5] Ľ. Straka, Analysis of Wire-Cut Electrical Discharge Machined Surface, LAP Lambert Academic Publishing, Germany, (2014).

Google Scholar

[6] R. Majerník, J. Ružbarský, The impact of technological parameters of die casting to casting porosity, MM Science Journal 10 (2016) 1047-1050.

DOI: 10.17973/mmsj.2016_10_201623

Google Scholar

[7] P. Monka, S. Hloch, A. Andrej, M. Šomšák, F. Murgaš, Simulation tools used at the injection mould design, Manuf. Technol. 16/3 (2016) 561-569.

DOI: 10.21062/ujep/x.2016/a/1213-2489/mt/16/3/561

Google Scholar

[8] M. Rimár, M. Fedák, A. Kulikov, P. Šmeringai, Dependence of hardness of continues die-casting products on Fe content, MM Science Journal 11 (2016) 1201-1204.

DOI: 10.17973/mmsj.2016_11_201634

Google Scholar

[9] A. Mičietová, M. Neslušan, M. Čilliková, Influence of surface geometry and structure after non-conventional methods of parting on the following milling operations, Manuf. Technol. 13 (2013) 199-204.

DOI: 10.21062/ujep/x.2013/a/1213-2489/mt/13/2/199

Google Scholar

[10] K.S. Banker, S.P. Parmar, B.C. Parekh, Review to Performance Improvement of Die Sinking EDM Using Powder Mixed Dielectric Fluid, Int. J. Res. Modern Eng. Emerg. Tech. 1 (2013) 57-62.

Google Scholar

[11] J. Dubják, J. Piteľ, M. Tóthová, Diagnostics of aluminum alloys melting temperature in high pressure casting, Key Eng. Mat. 669 (2016) 110-117.

DOI: 10.4028/www.scientific.net/kem.669.110

Google Scholar

[12] J. Ružbarský, J. Paško, Š. Gašpár, Techniques of Die Casting, Lüdenscheid, RAM-Verlag, (2014).

Google Scholar

[13] T. Krenický, Implementation of Virtual Instrumentation for Machinery Monitoring, in: Scientific Papers: Operation and Diagnostics of Machines and Production Systems Operational States: Vol. 4, RAM-Verlag, Lüdenscheid, 2011, pp.5-8.

Google Scholar

[14] S.K. Saha, S.K. Chaudhary, Experimental investigation and empirical modeling of the dry electrical discharge machining process, Int. J. Mach. Tool. Manuf. 49 (2009) 297-308.

Google Scholar

[15] M. Tóthová, M. Balara, J. Dubják, Simulation model of cascade control of the heating system, Int. J. Eng. Research in Africa 18 (2015) 20-27.

DOI: 10.4028/www.scientific.net/jera.18.20

Google Scholar

[16] P. Semančo, M. Fedák, Assessment of material flow in foundry production by applying simulation analysis, Applied Mechanics and Materials 308 (2013) 185-189.

DOI: 10.4028/www.scientific.net/amm.308.185

Google Scholar

[17] Ľ. Straka, I. Čorný, R. Kreheľ, Evaluation of capability of measuring device on the basis of diagnostics, Applied Mechanics and Materials 308 (2013) 69-74.

DOI: 10.4028/www.scientific.net/amm.308.69

Google Scholar

[18] O.A. Abu Zeid, On the effect of electro-discharge machining parameters on the fatigue life of AISI D6 tool steel, J. Mater. Process. Technol. 68 (1997) 27-32.

DOI: 10.1016/s0924-0136(96)02523-x

Google Scholar

[19] J. Duplák, M. Hatala, P. Michalik, Durability analysis for selected cutting tools in machining process of steel 16MoV6-3, Applied Mechanics and Materials 308 (2013) 133-139.

DOI: 10.4028/www.scientific.net/amm.308.133

Google Scholar

[20] Ľ. Straka, S. Hašová, Assessing the influence of technological parameters on the surface quality of steel MS1 after WEDM, MM Science Journal 11 (2016) 1194-1200.

DOI: 10.17973/mmsj.2016_11_201629

Google Scholar

[21] M. Prislupčák, A. Panda, M. Jančík et al., Diagnostic and experimental valuation on progressive machining unit, Applied Mechanics and Materials 616 (2014) 191-199.

DOI: 10.4028/www.scientific.net/amm.616.191

Google Scholar

[22] A. Panda, J. Duplák, M. Hatala, Cutting ceramic durability in machining process of bearings steel 100Cr6, MM Science Journal 10 (2016) 1060-1065.

DOI: 10.17973/mmsj.2016_10_201633

Google Scholar

[23] J. Marafona, C. Wykes, A new method of optimizing material removal rate using EDM with copper–tungsten electrodes, Int. J. Mach. Tools Manuf. 40 (2000) 153-164.

DOI: 10.1016/s0890-6955(99)00062-0

Google Scholar

[24] P. Monka, K. Monková et al., Design and experimental study of turning tools with linear cutting edges and comparison to commercial tools, Int. J. Adv. Manuf. Tech. 85/9-12 (2016) 2325-2343.

DOI: 10.1007/s00170-015-8065-3

Google Scholar

[25] C.H. Che Haron, Investigation on the influence of machining parameters when machining tool steel using EDM, J. Mater. Process. Technol. 1 (2001) 84-87.

DOI: 10.1016/s0924-0136(01)00846-9

Google Scholar

[26] J. Dobránsky, L. Běhálek, P. Baron et al., Determination of the EOS Maragingsteel MS1 Material Resistance at Low Temperatures, Metalurgija 55/3 (2016) 449-452.

Google Scholar

[27] X.L. Han, D.Y. Wu, X.L. Min et al., Influence of Post-Weld Heat Treatment on the Microstructure, Microhardness, and Toughness of a Weld Metal for Hot Bend, Metals 6 (2016).

DOI: 10.3390/met6040075

Google Scholar

[28] P. Baron, J. Zajac, M. Pollák, The correlation of parameters measured on rotary machine after reparation of disrepair state, MM Science Journal 11 (2016) 1244-1248.

DOI: 10.17973/mmsj.2016_11_201667

Google Scholar

[29] P. Baron, M. Kočiško, J. Dobránsky, M. Pollák, M. Telišková, Research and application of methods of technical diagnostics for the verification of the design node, Measurement 94 (2016) 245-253.

DOI: 10.1016/j.measurement.2016.07.089

Google Scholar

[30] Z. Hutyrová, W. Makiela, P. Michalik et al., Creation of mathematical prescription of residual stress depending on various cutting conditions, Key Eng. Mat. 669 (2016) 126-133.

DOI: 10.4028/www.scientific.net/kem.669.126

Google Scholar

[31] Ľ. Straka, I. Čorný, J. Piteľ, Properties evaluation of thin microhardened surface layer of tool steel after wire EDM, Metals 6/5 (2016) 1-16.

DOI: 10.3390/met6050095

Google Scholar

[32] M. Kiyak, O. Cakir, Examination of machining parameters on surface roughness in EDM of tool steel, J. Mater. Process. Technol. 1-3 (2007) 41-144.

Google Scholar

[33] S. Mathew, P.R.D. Varma, P.S. Kurian, Study on the Influence of process parameters on surface roughness and MRR of AISI 420 stainless steel machined by EDM, Int. J. Eng. Trends Technol. 2 (2014) 54-58.

DOI: 10.14445/22315381/ijett-v15p212

Google Scholar

[34] M. Neslušan et al., Experimental methods in splinter machining, EDIS ŽU, Žilina, (2007).

Google Scholar

[35] P. Stephen, P. S. Radzevich, R. Kreheľ, Application priority mathematical model of operating parameters in advanced manufacturing technology, Int. J. Adv. Manuf. Tech. 56/2 (2011) 835-840.

DOI: 10.1007/s00170-011-3221-x

Google Scholar

[36] Š. Olejárová, T. Krenický, Monitoring the condition of the spindle of the milling machine using vibration, MM Science Journal 11 (2016) 1227-1231.

DOI: 10.17973/mmsj.2016_11_201653

Google Scholar

[37] Ľ. Straka, I. Čorný, Heat Treating of Chrome Tool Steel before Electroerosion Cutting With Brass Electrode, Acta Metallurgica Slovaca 15/3 (2009) 180-186.

Google Scholar

[38] P. Michalik, J. Zajac, M. Hatala, J. Duplák, D. Mitaľ, Comparison of programming production of thin walled parts using different CAM systems, MM Science journal 10 (2016) 1056-1059.

DOI: 10.17973/mmsj.2016_10_201632

Google Scholar

[39] Ľ. Straka, I. Čorný, J. Piteľ, S. Hašová, Statistical Approach to Optimize the Process Parameters of HAZ of Tool Steel EN X32CrMoV12-28 after Die-Sinking EDM with SF-Cu Electrode, Metals 7/2 (2017) 1-22.

DOI: 10.3390/met7020035

Google Scholar

[40] Ľ. Straka, S. Hašová, Prediction of the heat-affected zone of tool steel EN X37CrMoV5–1 after die-sinking electrical discharge machining, Proc Inst. Mech. B: J. Eng. Manuf. 9 (2016) 1-12.

DOI: 10.1177/0954405416667405

Google Scholar

[41] M. Ťavodová, Research state heat affected zone of the material after wire EDM, Acta Fac. Tech. 19 (2014) 145-152.

Google Scholar

[42] Ľ. Straka, S. Hašová, Study of tool electrode wear in EDM process, Key Eng. Mat. 669 (2016) 302-310.

DOI: 10.4028/www.scientific.net/kem.669.302

Google Scholar

[43] M. Tóthová, M. Balara, J. Dubják, Simulation model of cascade control of the heating system, Int. J. Eng. Research in Africa 18 (2015) 20-27.

DOI: 10.4028/www.scientific.net/jera.18.20

Google Scholar

[44] T. Krenický, Non-contact Study of Surfaces Created Using the AWJ Technology, Manufacturing Technology 15/1 (2015) 61-64.

DOI: 10.21062/ujep/x.2015/a/1213-2489/mt/15/1/61

Google Scholar

[45] T. Krenický, Automated Non-Contact System for Characterization of Surface Geometry, in: Workshop ARTEP 2012: 22-24 February 2012, Stará Lesná, Košice: TU, 2012, pp.38-1/38-5.

Google Scholar