[1]
M. A. Brown, S. C. DeVito, Predicting azo dye toxicity, Crit. Rev. Env. Sci. Tec. 23 (1993) 249–324.
Google Scholar
[2]
A. Fujishima, X. Zhang, Titanium dioxide photocatalysis: present situation and future approaches, C. R. Chim. 9 (2006) 750–760.
DOI: 10.1016/j.crci.2005.02.055
Google Scholar
[3]
A. L. Linsebigler, G. Lu, J. T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev. 95 (1995) 735–758.
DOI: 10.1021/cr00035a013
Google Scholar
[4]
M. Atif, S.K. Hasanain, M. Nadeem, Magnetization of sol–gel prepared zinc ferrite nanoparticles: effects of inversion and particle size, Solid State Comm. 138 (2006) 416-421.
DOI: 10.1016/j.ssc.2006.03.023
Google Scholar
[5]
R. Shao, L. Sun, L. Tang, Z. Chen, Preparation and Characterization of Magnetic Core-Shell ZnFe2O4/ZnO Nanoparticles and their Application for the Photodegradation of Methylene Blue, Chem. Eng. J. 217 (2013)185-191.
DOI: 10.1016/j.cej.2012.11.109
Google Scholar
[6]
R. Rameshbabu, R. Ramesh, Samikannu Kanagesan, S. Ponnusamy, Synthesis of superparamagnetic ZnFe2O4 nanoparticle by surfactant assisted hydrothermal method, J Mater Sci: Mater Electron. 24(2013) 4279-4283.
DOI: 10.1007/s10854-013-1397-6
Google Scholar
[7]
W. Yuejuan, M. Jingmeng, L. Mengfei, F. Ping, H. Mai, Preparation of High-Surface Area Nano-CeO2 by Template-Assisted Precipitation Method, J. Rare Earths, 25(2007) 58-62.
DOI: 10.1016/s1002-0721(07)60045-3
Google Scholar
[8]
Y. Miao, H. Zhang, S. Yuan, Z. Jiao, X. Zhu, Preparation of flower-like ZnO architectures assembled with nanosheets for enhanced photocatalytic activity, J. Colloid Interf. Sci. 462 (2016) 9–18.
DOI: 10.1016/j.jcis.2015.09.064
Google Scholar
[9]
C. Hao, J. Wang, Q. Cheng, Y. Bai, X. Wang, Y. Yang, Anionic surfactants-assisted solution-phase synthesis of ZnO with improved photocatalytic performance, J. Photochem. Photobiol. A: Chem. 332 (2017) 384–390.
DOI: 10.1016/j.jphotochem.2016.09.013
Google Scholar
[10]
C. Suwanchawalit, S. Wongnawa, Triblock copolymer-templated synthesis of porous TiO2 and its photocatalytic activity, J. Nanopart. Res. 12 (2010) 2895-2906.
DOI: 10.1007/s11051-010-9880-y
Google Scholar
[11]
C. Suwanchawalit, S. Wongnawa, P. Sriprang, P. Meanha, Enhancement of the photocatalytic performance of Ag-modified TiO2 photocatalyst under visible light, Ceram. Inter. 38(2012) 5201-5207.
DOI: 10.1016/j.ceramint.2012.03.027
Google Scholar
[12]
J. Zhang, J. -M. Song, H. -L. Niu, C. -J. Mao, S. -Y. Zhang, Y. -H. Shen, ZnFe2O4 nanoparticles: Synthesis, characterization, and enhanced gas sensing property for acetone, Sens. Actuators B. 221 (2015) 55–62.
DOI: 10.1016/j.snb.2015.06.040
Google Scholar
[13]
T. Prabhakaran, R.V. Mangalaraja, Juliano C. Denardin, J.A. Jimenez, The effect of calcination temperature on the structural and magnetic properties of co-precipitated CoFe2O4 nanoparticles, J. Alloys Compd. 716 (2017) 171-183.
DOI: 10.1016/j.jallcom.2017.05.048
Google Scholar
[14]
D. Ramimoghadam, M. Z. Bin Hussein, Y. H. Taufiq-Yap, The Effect of Sodium Dodecyl Sulfate (SDS) and Cetyltrimethylammonium Bromide (CTAB) on the Properties of ZnO Synthesized by Hydrothermal Method, Int. J. Mol. Sci. 13(2012) 13275-13293.
DOI: 10.3390/ijms131013275
Google Scholar