Studies on the Deterioration of Ancient Thai Manuscripts

Article Preview

Abstract:

Various Thai manuscripts, commonly made from Khoi, suffer the severe deterioration primarily from the degradation of cellulose. Temperature, light, humidity, oxygen, pollution, and microorganisms are the main environmental factors for the conditions of manuscript collections. The degree of the cellulose deterioration can be studied by scanning electron microscopy (SEM), attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR) and X-ray diffraction (XRD). The morphology of the sample was revealed by Scanning Electron Microscopy. The fiber disintegration and the presence of inorganic particles can be found on the paper surface. The ATR-FTIR results showed the characteristic functional groups of cellulose as follows: nOH (3650–3100 cm-1), nCH (3000–2850 cm-1), dOH (~1640 cm-1), dCH (1420-1300 cm-1), nC-O-C of the b-glucosidic linkage (~1100 cm-1), and dCO or CC (~910 cm cm-1). The presence of inorganic filling, CO32- salt (~1400 cm-1) could not be determined explicitly due to the signal overlap with dCH. The relative intensities of the absorption peaks in dCH of the ancient paper samples are different to those of the new khoi paper. The X-ray diffraction of each sample showed the characteristic peaks of crystalline fraction at 2q between 22.0º and 23.0º and the amorphous fraction at 2q between 15.0º and 16.0º. However, the intensity ratio of the crystalline and amorphous phases for the ancient paper is less than that of the new paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-23

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Federici, P. Mufano, M.S. Storace, Ancient Paper and Its NMR Characterisation. Sci. Tech. Cult. Herit. 5 (1996) 37–47.

Google Scholar

[2] L. Laguardia, E. Vassallo, F. Cappitelli, E. Mesto, A. Cremona, C. Sorlini, G. Bonizzoni, Investigation of the effects of plasma treatments on biodeteriorated ancient paper, Appl. Surf. Sci. 252 (2005) 1159–1166.

DOI: 10.1016/j.apsusc.2005.02.045

Google Scholar

[3] E. Franceschi, Thermoanalytical methods : a valuable tool for art and archaeology, J. Therm. Anal. Calorim. 104 (2011) 527–539.

DOI: 10.1007/s10973-011-1343-x

Google Scholar

[4] M. Manso, S. Pessanha, M.L. Carvalho, Artificial aging processes in modern papers: X-ray spectrometry studies, Spectrochim. Acta Part B. 61 (2006) 922–928.

DOI: 10.1016/j.sab.2006.07.002

Google Scholar

[5] F. Pinzari, M. Zotti, A. De Mico, P. Calvini, Biodegradation of inorganic components in paper documents: formation of calcium oxalate crystals as a consequence of Aspergillus terreus Thom growth. Int. Biodeterior. Biodegrad. 64 (2010) 499–505.

DOI: 10.1016/j.ibiod.2010.06.001

Google Scholar

[6] L. Hajji, A. Boukir, J. Assouik, H. Lakhiari, A. Kerbal, P. Doumenq, G. Mille, M. L. De Carvalho, Conservation of Moroccan manuscript papers aged 150, 200 and 800 years. Analysis by infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and scanning electron microscopy energy dispersive spectrometry (SEM–EDS), Spectrochim. Acta Part A. 136 (2015).

DOI: 10.1016/j.saa.2014.09.127

Google Scholar

[7] G. Adami, A. Gorassini, E. Prenesti, M. Crosera, E. Baracchini, A. Giacomello, Micro-XRF and FT-IR/ATR analyses of an optically degraded ancient document of the Trieste (Italy) cadastral system (1893): A novel and surprising iron gall ink protective action, Microchem. J. 124 (2016).

DOI: 10.1016/j.microc.2015.07.020

Google Scholar

[8] M. Manso, S. Pessanha, M.L. Carvalho, Artificial aging processes in modern papers: X-ray spectrometry studies, Spectrochimica Acta Part B. 61 (2006) 922–928.

DOI: 10.1016/j.sab.2006.07.002

Google Scholar

[9] J. Rueangyodjantana and R. Buntem, Cellulose extraction and paper making from Khoi bark, Veridian E-Journal Science and Technology Silpakorn University. 4(2017) 50-59.

Google Scholar

[10] D. Ciolacu, J. Kovac, V. Kokol, The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers, Carbohydr. Res. 345 (2010) 621–630.

DOI: 10.1016/j.carres.2009.12.023

Google Scholar

[11] K. Castro, E. Princi,N. Proietti, M. Manso, D. Capitani, S. Vicini, J.M. Madariaga, M.L. De Carvalho, Assessment of theweathering effects on cellulose basedmaterials through a multianalytical approach, Nucl. Instrum. Methods B. 269 (2011).

DOI: 10.1016/j.nimb.2011.03.027

Google Scholar

[12] P. Calvini, A. Gorassini, G. Luciano, E. Franceschi, FTIR and WAXS analysis of periodate oxycellulose: evidence for a cluster mechanism of oxidation, Vib. Spectrosc. 40 (2006) 177–183.

DOI: 10.1016/j.vibspec.2005.08.004

Google Scholar

[13] D.N. -S. Hon, N. Shiraishi, Wood and Cellulosic Chemistry, in: F. Horii, Structure of Cellulose: Recent Developments in Its Characterization, 2nd ed. Marcel Dekker, New York 2001, p.83–108.

Google Scholar

[14] S. Xiao, R. Gao, Y. Lu, J. Li, Q. Sun, Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles, Carbohydr. Polym. 119 (2015) 202–209.

DOI: 10.1016/j.carbpol.2014.11.041

Google Scholar

[15] S.M. Santos, J.M. Carbajo, E. Quintana, D. Ibarra, N. Gomez, M. Ladero, M.E. Eugenio, J.C. Villar, Characterization of purified bacterial cellulose focused on its use on paper restoration, Carbohydr. Polym. 116 (2015) 173–181.

DOI: 10.1016/j.carbpol.2014.03.064

Google Scholar

[16] A. Xu, L. Cao, B. Wang, Facile cellulose dissolution without heating in [C4mim][CH3COO]/DMF solvent, Carbohydr. Polym. 125 (2015) 249–254.

DOI: 10.1016/j.carbpol.2015.07.085

Google Scholar

[17] M. Ni and B. D. Ratner, Differentiation of Calcium Carbonate Polymorphs by Surface Analysis Techniques-An XPS and TOF-SIMS study, Surf. Interface Anal. 40 (2008) 1356–1361.

DOI: 10.1002/sia.2904

Google Scholar

[18] N. Asikin-Mijan, H.V. Leea, Y.H. Taufiq-Yap, J.C. Juana, N.A. Rahman, Pyrolytic-deoxygenation of triglyceride via natural waste shell derived Ca(OH)2 nanocatalyst, J. Anal. Appl. Pyrol. 117 (2016) 46–55.

DOI: 10.1016/j.jaap.2015.12.017

Google Scholar