Studies on the Deterioration of the Cordon of the Most Illustrious Order of Chulachomklao

Article Preview

Abstract:

The Cordon of the Most Illustrious Order of Chulachomklao was one of the insignia that King Rama the fifth gave to the ladies of the court to present their goodness. One component of this object was made from silk and decorated by needled the silvered and golden thread as the laurel and the initial of King’s royal name. This ancient silk suffers from discoloration, low strength and severe deterioration. Amino acids in fibroin were photo-degraded under UV-irradiation and heat. Three silk samples, S-Raw, S-White and S-Ancient, were selected for ATR-FTIR and XRD analyses. FTIR spectroscopy can be used for the determination of the molecular structure of silk fibroin. The characteristic bands of silk fibroin corresponding to amide I, II, and III were found in all silk samples. The skeletal vibrations were also observed. Two degradation estimators, EAmideI/II and EcC=O2 were calculated and used to qualitatively estimate the degree of degradation due to oxidation and crystallinity of silk fibroin respectively. The results showed the higher degree of degradation and lower crystallinity of A-Ancient. The X-ray diffraction of S-Ancient showed the broader and weaker characteristic peaks at 2 theta of ∼ 20o indicating the lower crystallinity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

24-28

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Baltova, V. Vassileva, Photochemical behaviour of natural silkeII. Mechanism of fibroin photodestruction, Polym. Degrad. Stab. 60 (1998) 61-65.

DOI: 10.1016/s0141-3910(98)80027-x

Google Scholar

[2] A. Martel, M. Burghammer, R.J. Davies, C. Riekel, Thermal behavior of bombyx mori silk: evolution of crystalline parameters, molecular structure, and mechanical properties, Biomacromolecules. 8 (2007) 3548-3556.

DOI: 10.1021/bm700935w

Google Scholar

[3] K. Numata, P. Cebe, D.L. Kaplan, Mechanism of enzymatic degradation of beta sheet crystals, Biomaterials. 31 (2010) 2926-2933.

DOI: 10.1016/j.biomaterials.2009.12.026

Google Scholar

[4] D. Sargunamani, N. Selvakumar, A study on the effects of ozone treatment on the properties of raw and degummed mulberry silk fabrics, Polym. Degrad. Stab. 91 (2006) 2644-2653.

DOI: 10.1016/j.polymdegradstab.2006.05.001

Google Scholar

[5] J.Z. Shao, Z.H. Zheng, J.Q. Liu, C.M. Carr, Fourier transform Raman and Fourier transform infrared spectroscopy studies of silk fibroin, J. Appl. Polym. Sci. 96 (2005) 1999-(2004).

DOI: 10.1002/app.21346

Google Scholar

[6] X.M. Zhang, P. Wyeth, Moisture sorption as a potential condition marker for historic silks: noninvasive determination by near-infrared spectroscopy, Appl. Spectrosc. 61 (2007) 218-222.

DOI: 10.1366/000370207779947611

Google Scholar

[7] K. Kavkler, N. Gunde-Cimerman, P. Zalar, A. Dem_sar, FTIR spectroscopy of biodegraded historical textiles, Polym. Degrad. Stab. 96 (2011) 574-580.

DOI: 10.1016/j.polymdegradstab.2010.12.016

Google Scholar

[8] S. Greiff, H. Kutzke, C. Riekel, P. Wyeth, S. Lahlil. J. Rob, W. Paul, Scientific analysis of ancient and historic textiles, Archetype, London, 2004. p.38.

Google Scholar

[9] A.C. Hermes, R.J. Davies, S. Greiff, H. Kutzke, S. Lahlil, P. Wyeth, et al., Characterizing the decay of ancient Chinese silk fabrics by microbeam synchrotron radiation diffraction, Biomacromolecules. 7 (2006) 777-783.

DOI: 10.1021/bm0508313

Google Scholar

[10] X. Luo, J. Wu, A. Intisar, J. Geng, L. Wu, K. Zheng, Y. Du, Study on Light Aging of Silk Fabric by Fourier Transform Infrared Spectroscopy and Principal Component Analysis, Anal. Lett. 45 (2012) 1286–1296.

DOI: 10.1080/00032719.2012.673098

Google Scholar

[11] P. Taddei, P. Monti, G. Freddi, T. Arai, M. Tsukada, IR study on the binding mode of metal cations to chemically modified Bombyx mori and Tussah silk fibres, J. Mol. Struct. 651–653 (2003) 433–441.

DOI: 10.1016/s0022-2860(02)00663-4

Google Scholar

[12] A. Sionkowska, A. Planecka, The influence of UV radiation on silk fibroin, Polym. Degrad. Stab. 96 (2011) 523–528.

DOI: 10.1016/j.polymdegradstab.2011.01.001

Google Scholar

[13] B. Stuart, Modern infrared spectroscopy, in: Organic Compounds, John Wiley & Sons Ltd., West Sussex, 1996, p.97–108.

Google Scholar

[14] P. Garside, P. Wyeth, Crystallinity and degradation of silk: correlations between analytical signatures and physical condition on ageing, Appl. Phys. A. Mater. 89 (2007) 871-876.

DOI: 10.1007/s00339-007-4218-z

Google Scholar

[15] E. Bramanti, D. Catalano, C. Forte, M. Giovanneschi, M. Masetti, C. A. Veracini, Solid state (13)C NMR and FT-IR spectroscopy of the cocoon silk of two common spiders, Spectrochim. Acta. A. 62 (2005) 105-111.

DOI: 10.1016/j.saa.2004.12.008

Google Scholar

[16] H. Fabina, W. Mantele, Infrared spectroscopy of proteins, in: Handbook of vibrational spectroscopy, John Wiley & Sons, (2006).

Google Scholar

[17] G. Socrates, editor, Infrared and Raman characteristic group frequencies: tables and charts, third ed., John Wiley & Sons, (2004).

DOI: 10.1002/jrs.1238

Google Scholar

[18] M.M.R. Khan, H. Morikawa, Y. Gotoh, M. Miura, Z. Ming, Y. Sato, et al., Structural characteristics and properties of Bombyx mori silk fiber obtained by different artificial forcibly silking speeds, Int. J. Biol. Macromol. 42 (2008) 64-70.

DOI: 10.1016/j.ijbiomac.2007.12.001

Google Scholar

[19] A.R. Murphy, P. St. John, D.L. Kaplan, Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation, Biomaterials. 29 (2008) 2829-2838.

DOI: 10.1016/j.biomaterials.2008.03.039

Google Scholar

[20] P. Taddei, P. Monti, G. Freddi, T. Arai, M. Tsukada, IR study on the binding mode of metal cations to chemically modified Bombyx mori and Tussah silk fibres, J. Mol. Struct. 651-653 (2003) 433-441.

DOI: 10.1016/s0022-2860(02)00663-4

Google Scholar

[21] R.S. Davidson, The photodegradation of some naturally occurring polymers, J. Photochem. Photobiol. B. 33 (1996) 3-25.

Google Scholar

[22] M. Boulet-Audet, T. Lefèvre, H. Buffeteau, M. Pézolet, Attenuated Total Reflection Infrared Spectroscopy: An Efficient Technique to Quantitatively Determine the Orientation and Conformation of Proteins in Single Silk Fibers, Appl. Spectrosc. 62 (2008).

DOI: 10.1366/000370208785793380

Google Scholar

[23] S. Ling, Z. Qi, D.P. Knight, Z. Shao, X. Chen, Synchrotron FTIR Microspectroscopy of Single Natural Silk Fibers, Biomacromolecules. 12 (2011) 3344–3349.

DOI: 10.1021/bm2006032

Google Scholar

[24] T. Lefèvre, F. Paquet-Mercier, S. Lesage, M. -E. Rousseau, S. Bédard, M. Pézolet, Study by Raman spectromicroscopy of the effect of tensile deformation on the molecular structure of Bombyx mori silk, Vib. Spectrosc. 51 (2009) 136–141.

DOI: 10.1016/j.vibspec.2008.11.012

Google Scholar

[25] P. Monti, P. Taddei, G. Freddi, T. Asakura, M. Tsukada, Raman spectroscopic characterization of Bombyx mori silk fibroin: Raman spectrum of Silk I, J. Raman Spectrosc. 32 (2001) 103–107.

DOI: 10.1002/jrs.675

Google Scholar

[26] M.A. Koperska, D. Pawcenis, J. Bagniuk, M.M. Zaitz, M. Missori, T. Łojewski,J. Łojewska, Degradation markers of fibroin in silk through infrared spectroscopy, Polymer Degradation and Stability. 105 (2014) 185-196.

DOI: 10.1016/j.polymdegradstab.2014.04.008

Google Scholar

[27] B. Marelli, A. Alessandrino, S. Farè, G. Freddi, D. Mantovani, M. C. Tanzi, Compliant electrospun silk fibroin tubes for small vessel bypass grafting, Acta. Biomater. 6 (2010) 4019-4026.

DOI: 10.1016/j.actbio.2010.05.008

Google Scholar

[28] X.X. Feng, L. Zhou, H.L. Zhu, and J.Y. Chen, Study on the properties of nano-TiO2 particles modified silk fibroin porous film, J. Appl. Polym. Sc. 116 (2010) 468–472.

Google Scholar

[29] W.L. Xu, G.Z. Ke and X.Q. Peng, Studies on the effects of the enzymatic treatment on silk fine powder, J. Appl. Polym. Sc. 101 (2006) 2967–2971.

DOI: 10.1002/app.23529

Google Scholar

[30] Q.Q. Yuan, J.R. Yao, X. Chen, L. Huang, and Z.Z. Shao, The preparation of high performance silk fiber/fibroin composite, Polymer. 51 (2010) 4843–4849.

DOI: 10.1016/j.polymer.2010.08.042

Google Scholar