[1]
M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science 295 (2002) 469-472.
DOI: 10.1126/science.1067208
Google Scholar
[2]
J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal-organic framework materials as catalysts, Chem. Soc. Rev. 38 (2009) 1450-1459.
DOI: 10.1039/b807080f
Google Scholar
[3]
H. Zhou, S. Kitagawa, Metal–Organic Frameworks (MOFs), Chem. Soc. Rev. 43 (2014) 5415-5418.
DOI: 10.1039/c4cs90059f
Google Scholar
[4]
E.G. Derouane, C.D. Chang, Confinement effects in the adsorption of simple bases by zeolites, Microporous Mesoporous Mater. 35-36 (2000) 425-433.
DOI: 10.1016/s1387-1811(99)00239-5
Google Scholar
[5]
A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal-organic frameworks, Nat. Rev. Mater. 1 (2016) 15018.
DOI: 10.1038/natrevmats.2015.18
Google Scholar
[6]
L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M.H. Nilsen, S. Jakobsen, K.P. Lillerud, C. Lamberti, Disclosing the complex structure of UiO-66 metal organic framework: A synergic combination of experiment and theory, Chem. Mater. 23 (2011).
DOI: 10.1021/cm1022882
Google Scholar
[7]
A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, P. Behrens, Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals, Chem. Eur. J. 17 (2011) 6643-6651.
DOI: 10.1002/chem.201003211
Google Scholar
[8]
M. Kandiah, M.H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E.A. Quadrelli, F. Bonino, K.P. Lillerud, Synthesis and stability of tagged UiO-66 Zr-MOFs, Chem. Mater. 22 (2010) 6632-6640.
DOI: 10.1021/cm102601v
Google Scholar
[9]
Y.M. Chung, H.Y. Kim, W.S. Ahn, Friedel-crafts acylation of p-Xylene over sulfonated zirconium terephthalates, Catal. Lett. 144 (2014) 817-824.
DOI: 10.1007/s10562-014-1242-4
Google Scholar
[10]
W.J. Phang, H. Jo, W.R. Lee, J.H. Song, K. Yoo, B. Kim, C.S. Hong, Superprotonic conductivity of a UiO-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation, Angew. Chem. Int. Ed. 54 (2015) 5142-5146.
DOI: 10.1002/anie.201411703
Google Scholar
[11]
D.J. Parrillo, C. Lee, R.J. Gorte, Heats of adsorption for ammonia and pyridine in H-ZSM-5: evidence for identical Brønsted-acid sites, Appl. Catal., A 110 (1994) 67-74.
DOI: 10.1016/0926-860x(94)80106-1
Google Scholar
[12]
B. Boekfa, S. Choomwattana, P. Khongpracha, J. Limtrakul, Effects of the zeolite framework on the adsorptions and hydrogen-exchange reactions of unsaturated aliphatic, aromatic, and heterocyclic compounds in ZSM-5 zeolite: A combination of perturbation theory (MP2) and a newly developed density functional theory (M06-2X) in ONIOM scheme, Langmuir 25 (2009).
DOI: 10.1021/la901841w
Google Scholar
[13]
M. Lin Foo, S. Horike, T. Fukushima, Y. Hijikata, Y. Kubota, M. Takata, S. Kitagawa, Ligand-based solid solution approach to stabilisation of sulphonic acid groups in porous coordination polymer Zr6O4(OH)4(BDC)6(UiO-66), Dalton Trans 41 (2012).
DOI: 10.1039/c2dt31195j
Google Scholar
[14]
M.J. Frisch, et al. Gaussian 09 (Gaussian, Inc., Wallingford CT, 2009).
Google Scholar