An Experimental and Theoretical Study on the Aldol Condensation on Zirconium-Based Metal-Organic Framework

Article Preview

Abstract:

The aldol condensation of acetone in zirconium-based metal-organic framework functionalized by a sulfonic acid group (UiO-66-SO3H) has been theoretically investigated using the density functional theory. Acetone adsorbed on the UiO-66-SO3H with the adsorption energy of -17.4 kcal/mol. The catalyzed reaction has been proposed to be a two-step mechanism: the tautomerization of keto form to produce enol form of acetone, and the aldol condensation to produce diacetone alcohol. The activation energies were calculated to be 27.2 and 6.4 kcal/mol, respectively. For the experimental part, UiO-66-SO3H catalyst was synthesized and characterized by X-ray diffraction and IR spectroscopy. The catalytic reaction was carried out in a stirred batch reactor at different temperatures to optimize the reaction conditions. The obtained products were analyzed by 1H-NMR spectroscopy and chromatography techniques. This study demonstrated that UiO-66-SO3H can be used as a solid catalyst for the aldol condensation reaction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

98-102

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science 295 (2002) 469-472.

DOI: 10.1126/science.1067208

Google Scholar

[2] M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M. Reineke, M. O'Keeffe, O.M. Yaghi, Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks, Acc. Chem. Res. 34 (2001).

DOI: 10.1021/ar000034b

Google Scholar

[3] J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal-organic framework materials as catalysts, Chem. Soc. Rev. 38 (2009) 1450-1459.

DOI: 10.1039/b807080f

Google Scholar

[4] H. Zhou, S. Kitagawa, Metal–Organic Frameworks (MOFs), Chem. Soc. Rev. 43 (2014) 5415-5418.

DOI: 10.1039/c4cs90059f

Google Scholar

[5] K. Kongpatpanich, S. Horike, M. Sugimoto, S. Kitao, M. Seto, S. Kitagawa, A porous coordination polymer with a reactive diiron paddlewheel unit, Chem. Commun. 50 (2014) 2292-2294.

DOI: 10.1039/c3cc47954d

Google Scholar

[6] F. Vermoortele, R. Ameloot, A. Vimont, C. Serre, D. De Vos, An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation, Chem. Commun. 47 (2011) 1521-1523.

DOI: 10.1039/c0cc03038d

Google Scholar

[7] M. Kandiah, M.H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E.A. Quadrelli, F. Bonino, K.P. Lillerud, Synthesis and stability of tagged UiO-66 Zr-MOFs, Chem. Mater. 22 (2010) 6632-6640.

DOI: 10.1021/cm102601v

Google Scholar

[8] A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, P. Behrens, Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals, Chem. Eur. J. 17 (2011) 6643-6651.

DOI: 10.1002/chem.201003211

Google Scholar

[9] L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M.H. Nilsen, S. Jakobsen, K.P. Lillerud, C. Lamberti, Disclosing the complex structure of UiO-66 metal organic framework: A synergic combination of experiment and theory, Chem. Mater. 23 (2011).

DOI: 10.1021/cm1022882

Google Scholar

[10] A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal–organic frameworks, Nat. Rev. Mat. 1 (2016) 15018.

DOI: 10.1038/natrevmats.2015.18

Google Scholar

[11] D. Feng, W.C. Chung, Z. Wei, Z.Y. Gu, H.L. Jiang, Y.P. Chen, D.J. Darensbourg, H.C. Zhou, Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination, J. Am. Chem. Soc. 135 (2013) 17105-17110.

DOI: 10.1021/ja408084j

Google Scholar

[12] K.A. Mocniak, I. Kubajewska, D.E.M. Spillane, G.R. Williams, R.E. Morris, Incorporation of cisplatin into the metal–organic frameworks UiO66-NH2 and UiO66-encapsulation vs. conjugation, RSC Adv. 5 (2015) 83648-83656.

DOI: 10.1039/c5ra14011k

Google Scholar

[13] T. Xu, E.J. Munson, J.F. Haw, Toward a systematic chemistry of organic reactions in zeolites: In situ NMR studies of ketones, J. Am. Chem. Soc. 116 (1994) 1962-(1972).

DOI: 10.1021/ja00084a041

Google Scholar

[14] A.I. Biaglow, J. Sepa, R.J. Gorte, D. White, A 13C NMR study of the condensation chemistry of acetone and acetaldehyde adsorbed at the brønsted acid sites in H-ZSM-5, J. Catal. 151 (1995) 373-384.

DOI: 10.1006/jcat.1995.1040

Google Scholar

[15] A.G. Panov, J.J. Fripiat, Acetone condensation reaction on acid catalysts, J. Catal. 178 (1998) 188-197.

DOI: 10.1006/jcat.1998.2142

Google Scholar

[16] E. Dumitriu, V. Hulea, I. Fechete, A. Auroux, J.F. Lacaze, C. Guimon, The aldol condensation of lower aldehydes over MFI zeolites with different acidic properties, Microporous Mesoporous Mater. 43 (2001) 341-359.

DOI: 10.1016/s1387-1811(01)00265-7

Google Scholar

[17] A.N. Migues, S. Vaitheeswaran, S.M. Auerbach, Density functional theory study of mixed aldol condensation catalyzed by acidic zeolites HZSM-5 and HY, J. Phys. Chem. C 118 (2014) 20283-20290.

DOI: 10.1021/jp504131y

Google Scholar

[18] J. Hajek, M. Vandichel, B. Van De Voorde, B. Bueken, D. De Vos, M. Waroquier, V. Van Speybroeck, Mechanistic studies of aldol condensations in UiO-66 and UiO-66-NH2 metal organic frameworks, J. Catal. 331 (2015) 1-12.

DOI: 10.1016/j.jcat.2015.08.015

Google Scholar

[19] Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc. 120 (2008).

DOI: 10.1007/s00214-007-0310-x

Google Scholar

[20] B. Boekfa, P. Pantu, M. Probst, J. Limtrakul, Adsorption and tautomerization reaction of acetone on acidic zeolites: The confinement effect in different types of zeolites, J. Phys. Chem. C 114 (2010) 15061-15067.

DOI: 10.1021/jp1058947

Google Scholar

[21] T. Maihom, S. Wannakao, B. Boekfa, J. Limtrakul, Production of formic acid via hydrogenation of CO2 over a copper-alkoxide-functionalized MOF: A mechanistic study, J. Phys. Chem. C 117 (2013) 17650-17658.

DOI: 10.1021/jp405178p

Google Scholar

[22] M.J. Frisch, et al. Gaussian 09 (Gaussian, Inc., Wallingford CT, 2009).

Google Scholar