Electrical Properties of Steel Fibre Reinforced Alkali-Activated Slag Composite

Article Preview

Abstract:

Alkali-activated slag is an alternative binder to the ordinary Portland cement. In order to improve its tensile properties steel fibres as dispersed reinforcement can be used. Since steel is very good conductor it changes the electrical properties of alkali-activated slag composite that can have a potential to be used as self-sensing material then. In this study up to 20% of steel fibres by mass of the slag was added to alkali-activated slag mortar and the mechanical properties, electrical resistance, capacitance and microstructure of the composites were investigated. The results showed that the best improvement of both the mechanical and electrical properties can be observed for the composite with 15% of steel fibres.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-60

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Shi, P.V. Krivenko, D. Roy, Alkali-activated Cements and Concretes, Taylor & Francis, Oxon, UK, (2006).

DOI: 10.4324/9780203390672

Google Scholar

[2] J. L. Provis, J.S. J van Deventer, Alkali Activated Materials, RILEM, Springer, (2014).

Google Scholar

[3] F. Puertas, T. Amat, A. Fernandez-Jimenez, T. Vazquez, Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres, Cem. Concr. Res. 33 (2003) 2031-(2036).

DOI: 10.1016/s0008-8846(03)00222-9

Google Scholar

[4] C. D. Johnston, Fiber-reinforced Cements and Concretes, Taylor & Francis, London, (2010).

Google Scholar

[5] M. Şahmaran, I. Ö. Yaman, Hybrid fiber reinforced self-compacting concrete with a high volume coarse fly ash, Constr. Build. Mater. 21 (2007) 150-156.

DOI: 10.1016/j.conbuildmat.2005.06.032

Google Scholar

[6] F. Bencardino, L. Rizzuti, G. Spadea, R.N. Swamy, Experimental evaluation of fiber reinforced concrete fracture properties. Composites Part B: Eng. 41 (2010) 17-24.

DOI: 10.1016/j.compositesb.2009.09.002

Google Scholar

[7] B. Han, S. Ding, X. Yu, Intrinsic self-sensing concrete and structures: A review, Measurement, 59 (2015) 110-128.

DOI: 10.1016/j.measurement.2014.09.048

Google Scholar

[8] P. J. Tumidajski, P. Xie, M. Arnott, J. J. Beaudoin, Overlay current in a conductive concrete snow melting system, Cem. Concr. Res. 33 (2003) 1807-1809.

DOI: 10.1016/s0008-8846(03)00198-4

Google Scholar

[9] H. Guan, S. Liu, Y. Duan, J. Cheng, Cement based electromagnetic shielding and absorbing building materials, Cem. Concr. Comp. 28 (2006) 468-474.

DOI: 10.1016/j.cemconcomp.2005.12.004

Google Scholar

[10] B. Han, X. Yu, E. Kwon, A self-sensing carbon nanotube/cement composite for traffic monitoring, Nanotechnology 20 (2009) 445501-445505.

DOI: 10.1088/0957-4484/20/44/445501

Google Scholar

[11] M. Saafi, K. Andrew, P. L. Tang, D. McGhon, S. Taylor, M. Rahman, S. Yang, X. Zhou, Multifunctional properties of carbon nanotube/fly ash geopolymeric nanocomposites Constr. Build. Mater. 49 (2013) 46-55.

DOI: 10.1016/j.conbuildmat.2013.08.007

Google Scholar

[12] J. L. Vilaplana, F. J. Baeza, O. Galao, E. Zornoza, P. Garcés, Self-Sensing Properties of Alkali Activated Blast Furnace Slag (BFS) Composites Reinforced with Carbon Fibers, Materials 6 (2013) 4776-4786.

DOI: 10.3390/ma6104776

Google Scholar