Influence of Milling on some Chemical Properties and Reactivity of CFBC Fly Ash

Article Preview

Abstract:

This paper describes influence of milling on chemical properties of fly ash from Circulating fluidized Bed Combustion (CFBC). Specific properties of fly ash was determined using calorimetric measurement. It was determined heat properties and total content of calcium oxide CaO. The following methods of measurement were also performed: granulometric measurement and chemical analysis. The ash properties of non-milled and milled ashes were also described and evaluated and the ash reactivity was compared.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-80

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Šulc, P. Svoboda, Activation of fly ash binder in POP concrete without heating, in: XI. Conf. Ekologie a nové stavební hmoty a výrobky, VUSTAH, Telč, 2007, pp.116-119.

Google Scholar

[2] T. Váchal, P. Svoboda, Influence of temperature and time of heat curing in geopolymer reactions of fly-ash concrete mixtures, in: XVI. Conf. Ekologie a nové stavební hmoty a výrobky, VUSTAH, Telč, 2012, pp.79-82.

Google Scholar

[3] J. Poláček, R. Šulc, Properties of Materials from activated fly ash from fluidized burning, in: 11th International Conference Special Concrete and Composites 2014, Skalský Dvůr, 2014, p.173 – 177.

DOI: 10.4028/www.scientific.net/amr.1000.338

Google Scholar

[4] J. Poláček, R. Šulc, Characteristic properties of the fly ash from coal combustion, in: Special Concrete and Composites 2015, Skalský Dvůr, 2015, pp.75-79.

Google Scholar

[5] M. Vašák, The diploma thesis, CTU in Prague, Faculty of Civil Engineering, Praha (2016).

Google Scholar

[6] T. Váchal et al., Chemical Properties and Reactivity of CFBC Fly Ash, Key Engineering Materials, Vol. 722, pp.132-139, (2016).

DOI: 10.4028/www.scientific.net/kem.722.132

Google Scholar

[7] J. Temuujin, R.P. Williams, A. van Riessen, Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature, Journal of Materials Processing Technology, Volume 209, Issue 12, 2009, Pages 5276-5280, ISSN 0924-0136.

DOI: 10.1016/j.jmatprotec.2009.03.016

Google Scholar

[8] A.A. Zaldívar-Cadena et al., Effect of Milling Time on Mechanical Properties of Fly Ash Incorporated Cement Mortars, Advanced Materials Research, Vol. 787, pp.286-290, (2013).

DOI: 10.4028/www.scientific.net/amr.787.286

Google Scholar

[9] K. J. Laidler, The World of Physical Chemistry, in: Oxford University Press, ISBN 0-19-855919-4.

Google Scholar

[10] CSN 72 2080 Fluid fly ash for building purposes.

Google Scholar

[11] A. G. Whittaker, A. R. Mount, and M. R. Heal, Physical Chemistry, Instant Notes Series, BIOS Scientific Publishers, Oxford, UK, (2000).

DOI: 10.4324/9780203009925

Google Scholar

[12] Fraay, A.L.A., Bijen, J.M. and De Haan, Y.M. The reaction of fly ash in concrete, a critical examination, Cement and Concrete Res., vol. 19, 1989, pp.235-246.

DOI: 10.1016/0008-8846(89)90088-4

Google Scholar

[13] Xu, A. and Sarkar, S.L. Microstructural development in high-volume fly-ash cement system, J. of Mat. in Civil Eng., vol. 6, 1994, pp.117-136.

DOI: 10.1061/(asce)0899-1561(1994)6:1(117)

Google Scholar

[14] Taylor, H.F.W. Cement chemistry, 2nd ed. London: Thomas Telford, (1997).

Google Scholar

[15] Hewlett, P.C. Lea's chemistry of cement and concrete, 4th ed. London: Arnold, (1998).

Google Scholar

[16] Song, S. and Jennings, H.M. Pore solution chemistry of alkali-activated ground granulated blastfurnace slag, Cement and Concrete Res., vol. 29, 1999, pp.159-170.

DOI: 10.1016/s0008-8846(98)00212-9

Google Scholar

[17] Song, S., Sohn, D., Jennings, H.M. and Mason, T.O. Hydration of alkali-activated ground granulated blast furnace slag, J. of Mat. Sci., vol. 35, 2000, pp.249-257.

Google Scholar

[18] Pietersen, H.S. Reactivity of fly ash and slag in cement, Ph.D. Thesis, Delft University of Technology, The Netherlands, (1993).

Google Scholar

[19] ČSN EN 450-1, Popílek do betonu: Definice, specifikace a kritéria shody, (2013).

Google Scholar

[20] Rentgenová prvková analýza XRF, VŠCHT (online), Praha 2015, Accesible from: http: /old. vscht. cz/clab/RTG.

Google Scholar