Hydration Behaviour of Sufonated Polyetheretherketone (SPEEK) Membranes

Article Preview

Abstract:

Polymer electrolyte membranes (PEM) have a potential to become power sources in automotive industry and other household applications. PEM such as sulfonated polyetheretherketone (SPEEK) have acceptable operating temperature range but proton conductivity is dependent on amount of sulfonic groups attached to the polymer backbone (degree of sulfonation). At the same time, the sulfonic groups cause sorption of water from surrounding vapour or liquid. This factor may lead to mechanical failure if membrane absorbs too much water. Modification of PEM by adding ionic liquids (IL) may provide good proton conductivity but presence of water could also be critical factor of membrane stability as in high humidity conditions IL are washed out of membrane and replaced by water molecules. PEM with IL inclusions could be potentially used at temperatures close to water boiling point and higher as IL used in this research are thermally stable in temperatures up to 200°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

220-225

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.L. Di Vona, D. Marani, D'Epifanio, S. Licoccia, I. Beurroies, R. Denoyel, P. Knauth, Hybrid materials for polymer electrolyte membrane fuel cells: Water uptake, mechanical and transport properties, J. Membr. Sc. 304 (2007) 76-81.

DOI: 10.1016/j.memsci.2007.07.013

Google Scholar

[2] A. Basile, L. Patuurzo, A. Iulianelli, I. Gatto I, E. Passalacqua, Sulfonated PEEK-WC membranes for proton exchange membrane fuel cell: Effect of increasing level of sulfonation on electrochemical performances, J. Membr. Sc. 281 (2006) 377-385.

DOI: 10.1016/j.memsci.2006.04.006

Google Scholar

[3] C. Fiori, A. Dell'Era, F. Zuccari, A. Santiangeli, A. D'Orazio, F. Orencchini, Critical review of fuel cell's membranes and identification of alternative types for automotive applications, Int. J. Hydrogen Energy 40 (2015) 11949-11959.

DOI: 10.1016/j.ijhydene.2015.03.105

Google Scholar

[4] J. Chen , M . Asano, Y. Maekawa, M. Yoshida, Fuel cell performance of polyetheretherketone-based polymer electrolyte membranes prepared by a two-step grafting method, J. Membr. Sci. 319 (2008) 1-4.

DOI: 10.1016/j.memsci.2008.03.046

Google Scholar

[5] J. Chen, D. Li D, H. Koshikawa, M. Zhai, M. Asano M, H. Oku, Y. Maekawa Y, Modification of ultrathin polyetheretherketone film for application in direct methanol fuel cells, J. Membr. Sci. 344 (2009) 266-274.

DOI: 10.1016/j.memsci.2009.08.016

Google Scholar

[6] H. Luo, G. Vaivars, M. Mathe, Cross-linked PEEK-WC proton exchange membrane for fuel cell, Int. J. Hydrogen Energy 34 (2009) 8616-8621.

DOI: 10.1016/j.ijhydene.2009.08.024

Google Scholar

[7] K. Umemura, T. Wang, M. Hara, R. Kuroda, O. Uchida, M. Nagai, Nanocharacterization and nanofabrication of a nafion thin film in liquids by atomic force microscopy, Langmuir 22, 7 (2006) 3306-3312.

DOI: 10.1021/la051926t

Google Scholar

[8] N. Takimoto, L. Wu, A. Ohira, Y. Takeoka, M. Rikukawa, Hydration behaviour of perfluorinated and hydrocarbon-type proton exchange membranes: relationship between morphology and proton conduction, Polymer 50 (2009) 534-540.

DOI: 10.1016/j.polymer.2008.11.029

Google Scholar

[9] M.A. Vandiver, B.R. Caire, J.R. Carver, K. Waldrop, M.R. Hibbs, J.R. Varcoe, A.M. Herring, M.W. Liberatore, Mechanical characterization of anion exchange membranes by extensional rheology under controlled hydration, J. Electrochem. Soc. 161, 10 (2014).

DOI: 10.1149/2.0971410jes

Google Scholar

[10] A. Khawam, D.R. Flanagan, Basics and applications of solid-state kinetics: A pharmaceutical perspective, J. Pharmaceutical Soc. 95, 3 (2006) 472-498.

DOI: 10.1002/chin.200623291

Google Scholar