[1]
M. Trojanowicz, Analytical applications of carbon nanotubes: a review. Trends Anal. Chem. 25 (2006) 480-489.
Google Scholar
[2]
V. Georgakilas, J.N. Tiwari, K.C. Kemp, J.A. Perman, A.B. Bourlinos, K.S. Kim, R. Zboril, Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev, 116 (2016).
DOI: 10.1021/acs.chemrev.5b00620
Google Scholar
[3]
M.F., De Volder, S.H., Tawfick, R.H., Baughman, A.J., Hart, Carbon nanotubes: present and future commercial applications. Science, 339 (2013) 535-539.
DOI: 10.1126/science.1222453
Google Scholar
[4]
F. Ahmed, B.S. Lalia, V. Kochkodan, N. Hilal, R. Hashaikeh, Electrically conductive polymeric membranes for fouling prevention and detection: A review. Desalination 391 (2016) 1-15.
DOI: 10.1016/j.desal.2016.01.030
Google Scholar
[5]
M. Farukh, S.K. Dhawan, Poly (3, 4-ethylene dioxythiophene) grafted multiwalled carbon nanotube decorated polyurethane foam for antistatic and EMI shielding applications. Adv. Mater. Lett. (2016) 461-466.
DOI: 10.5185/amlett.2016.6011
Google Scholar
[6]
J. Zhou, G. Lubineau, Improving electrical conductivity in polycarbonate nanocomposites using highly conductive PEDOT/PSS coated MWCNTs. Appl. Mater. Iterfac. 5 (2013) 6189-6200.
DOI: 10.1021/am4011622
Google Scholar
[7]
T.S. Swathy, T.S., M.A. Jose, M.J. Antony, AOT assisted preparation of ordered, conducting and dispersible core-shell nanostructured polythiophene–MWCNT nanocomposites. Polym, 103 (2016) 206-213.
DOI: 10.1016/j.polymer.2016.09.047
Google Scholar
[8]
B. Massoumi, M. Jaymand, R. Samadi, A.A. Entezami, In situ chemical oxidative graft polymerization of thiophene derivatives from multi-walled carbon nanotubes. J. Polym. Res. 21 (2014) 442.
DOI: 10.1007/s10965-014-0442-3
Google Scholar
[9]
B. Philip, J. Xie, A. Chandrasekhar, J. Abraham, V.K. Varadan, A novel nanocomposite from multiwalled carbon nanotubes functionalized with a conducting polymer. Smart Mater. Structur. 13(2014) 295.
DOI: 10.1088/0964-1726/13/2/007
Google Scholar
[10]
A. Pistone, A. Ferlazzo, M. Lanza, C. Milone, D. Iannazzo, A. Piperno, E. Piperopoulos, S. Galvagno, Morphological modification of MWCNT functionalized with HNO3/H2SO4 mixtures. J. Nanosci. Nanotechnol. 12(2012), 5054-5060.
DOI: 10.1166/jnn.2012.4928
Google Scholar
[11]
S. Lefrant, M. Baibarac, I. Baltog, J.Y. Mevellec, C. Godon, O. Chauvet, Functionalization of single-walled carbon nanotubes with conducting polymers evidenced by Raman and FTIR spectroscopy. Diamond Related Mater. 14(2005) 867-872.
DOI: 10.1016/j.diamond.2004.11.035
Google Scholar
[12]
A.S. Patole, S.P. Patole, S.Y. Jung, J.B. Yoo, J.H. An, T.H. Kim, Self assembled graphene/carbon nanotube/polystyrene hybrid nanocomposite by in situ microemulsion polymerization. Europ. Polym. J. 48 (2012) 252-259.
DOI: 10.1016/j.eurpolymj.2011.11.005
Google Scholar
[13]
A. Elschner, S. Kirchmeyer, W. Lovenich, U. Merker, K. Reuter, PEDOT: Principles and Applications of an Intrinsically Conductive Polymer, CRC Press, Boca Raton, London, New York, 2010, p.76.
DOI: 10.1201/b10318
Google Scholar
[14]
B. Marinho, M. Ghislandi, E. Tkalya, C. E. Koning, G. de With, Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder, Powder Technol., 221 (2012) 351-358.
DOI: 10.1016/j.powtec.2012.01.024
Google Scholar