Development and Characterization of Novel Conductive Nanofiller Based on Multi-Walled Carbon Nanotubes Grafted with Poly(3,4-Ethylenedioxythiophene)

Article Preview

Abstract:

In the present study, an approach for the graft polymerization of multi-walled carbon nanotubes (MWCNTs) with 3,4-ethylenedioxythiophene (EDOT) has been evaluated. The surface of the MWCNTs was activated with thiophene groups through the amide linker followed by oxidative polymerization of EDOT monomer resulted in the development of PEDOT-g-MWCNTs. The methods of thermal gravimetric analysis (TGA), X-ray fluorescence, and Raman spectroscopy were used for characterization of functionalization efficiency. The TGA data indicated of 21% functionalization attached to MWCNTs. X-ray fluorescence confirmed the presence of Cl, and S atoms in functionalized fillers. The study of Raman spectra confirmed the presence of PEDOT groups attributed to most characteristic signal at 1400-1500 cm-1 region. The electrical conductivity for both pristine MWCNT and PEDOT-g-MWCNT powder materials was compared.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

203-208

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Trojanowicz, Analytical applications of carbon nanotubes: a review. Trends Anal. Chem. 25 (2006) 480-489.

Google Scholar

[2] V. Georgakilas, J.N. Tiwari, K.C. Kemp, J.A. Perman, A.B. Bourlinos, K.S. Kim, R. Zboril, Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev, 116 (2016).

DOI: 10.1021/acs.chemrev.5b00620

Google Scholar

[3] M.F., De Volder, S.H., Tawfick, R.H., Baughman, A.J., Hart, Carbon nanotubes: present and future commercial applications. Science, 339 (2013) 535-539.

DOI: 10.1126/science.1222453

Google Scholar

[4] F. Ahmed, B.S. Lalia, V. Kochkodan, N. Hilal, R. Hashaikeh, Electrically conductive polymeric membranes for fouling prevention and detection: A review. Desalination 391 (2016) 1-15.

DOI: 10.1016/j.desal.2016.01.030

Google Scholar

[5] M. Farukh, S.K. Dhawan, Poly (3, 4-ethylene dioxythiophene) grafted multiwalled carbon nanotube decorated polyurethane foam for antistatic and EMI shielding applications. Adv. Mater. Lett. (2016) 461-466.

DOI: 10.5185/amlett.2016.6011

Google Scholar

[6] J. Zhou, G. Lubineau, Improving electrical conductivity in polycarbonate nanocomposites using highly conductive PEDOT/PSS coated MWCNTs. Appl. Mater. Iterfac. 5 (2013) 6189-6200.

DOI: 10.1021/am4011622

Google Scholar

[7] T.S. Swathy, T.S., M.A. Jose, M.J. Antony, AOT assisted preparation of ordered, conducting and dispersible core-shell nanostructured polythiophene–MWCNT nanocomposites. Polym, 103 (2016) 206-213.

DOI: 10.1016/j.polymer.2016.09.047

Google Scholar

[8] B. Massoumi, M. Jaymand, R. Samadi, A.A. Entezami, In situ chemical oxidative graft polymerization of thiophene derivatives from multi-walled carbon nanotubes. J. Polym. Res. 21 (2014) 442.

DOI: 10.1007/s10965-014-0442-3

Google Scholar

[9] B. Philip, J. Xie, A. Chandrasekhar, J. Abraham, V.K. Varadan, A novel nanocomposite from multiwalled carbon nanotubes functionalized with a conducting polymer. Smart Mater. Structur. 13(2014) 295.

DOI: 10.1088/0964-1726/13/2/007

Google Scholar

[10] A. Pistone, A. Ferlazzo, M. Lanza, C. Milone, D. Iannazzo, A. Piperno, E. Piperopoulos, S. Galvagno, Morphological modification of MWCNT functionalized with HNO3/H2SO4 mixtures. J. Nanosci. Nanotechnol. 12(2012), 5054-5060.

DOI: 10.1166/jnn.2012.4928

Google Scholar

[11] S. Lefrant, M. Baibarac, I. Baltog, J.Y. Mevellec, C. Godon, O. Chauvet, Functionalization of single-walled carbon nanotubes with conducting polymers evidenced by Raman and FTIR spectroscopy. Diamond Related Mater. 14(2005) 867-872.

DOI: 10.1016/j.diamond.2004.11.035

Google Scholar

[12] A.S. Patole, S.P. Patole, S.Y. Jung, J.B. Yoo, J.H. An, T.H. Kim, Self assembled graphene/carbon nanotube/polystyrene hybrid nanocomposite by in situ microemulsion polymerization. Europ. Polym. J. 48 (2012) 252-259.

DOI: 10.1016/j.eurpolymj.2011.11.005

Google Scholar

[13] A. Elschner, S. Kirchmeyer, W. Lovenich, U. Merker, K. Reuter, PEDOT: Principles and Applications of an Intrinsically Conductive Polymer, CRC Press, Boca Raton, London, New York, 2010, p.76.

DOI: 10.1201/b10318

Google Scholar

[14] B. Marinho, M. Ghislandi, E. Tkalya, C. E. Koning, G. de With, Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder, Powder Technol., 221 (2012) 351-358.

DOI: 10.1016/j.powtec.2012.01.024

Google Scholar