[1]
S. Banerjee, K.K. Kar, Impact of degree of sulfonation on microstructure, thermal, thermomechanical and physicochemical properties of sulfonated poly ether ether ketone, Polym. (UK). 109 (2017) 176-186.
DOI: 10.1016/j.polymer.2016.12.030
Google Scholar
[2]
O.Z. Sharaf, M.F. Orhan, An overview of fuel cell technology: Fundamentals and applications, Renew. Sustain. Energy Rev. 32 (2014) 810-853.
DOI: 10.1016/j.rser.2014.01.012
Google Scholar
[3]
Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. Energy 88 (2011) 981-1007.
DOI: 10.1016/j.apenergy.2010.09.030
Google Scholar
[4]
L. Giorgi, F. Leccese, Fuel Cells: Technologies and Applications, Open F.C.J. 6 (2013) 1-20.
Google Scholar
[5]
B. Holland, J. Zhu, L. Jamet, Fuel cell technology and application, Univ. Technol. (2007).
Google Scholar
[6]
A.R. Hakim, A. Purbasari, T.D. Kusworo, E.L. Dewi, Composite sPEEK with Nanoparticles for Fuel Cell's Applications: Review, Proceeding Int. Conf. Chem. Mater. Eng. (2012) 1-11.
Google Scholar
[7]
D.J. Kim, M.J. Jo, S.Y. Nam, A review of polymer–nanocomposite electrolyte membranes for fuel cell application, J. Ind. Eng. Chem. 21 (2015) 36-52.
Google Scholar
[8]
R. Herrera Alonso, L. Estevez, H. Lian, A. Kelarakis, E.P. Giannelis, Nafion-clay nanocomposite membranes: Morphology and properties, Polymer (Guildf). 50 (2009) 2402-2410.
DOI: 10.1016/j.polymer.2009.03.020
Google Scholar
[9]
A. Iulianelli, A. Basile, Sulfonated PEEK-based polymers in PEMFC and DMFC applications: A review, Int. J. Hydrogen Energy 37 (2012) 15241-15255.
DOI: 10.1016/j.ijhydene.2012.07.063
Google Scholar
[10]
J. Jaafar, A.F. Ismail, T. Matsuura, K. Nagai, Performance of SPEEK based polymer-nanoclay inorganic membrane for DMFC, J. Memb. Sci. 382 (2011) 202-211.
DOI: 10.1016/j.memsci.2011.08.016
Google Scholar
[11]
E. Jeong, J.W. Lim, K. won Seo, Y.S. Lee, Effects of physicochemical treatments of illite on the thermo-mechanical properties and thermal stability of illite/epoxy composites, J. Ind. Eng. Chem. 17 (2011) 77-82.
DOI: 10.1016/j.jiec.2010.10.012
Google Scholar
[12]
N. Srivastava, Y. Singh, R. A. Singh, Preparation of intercalated polyaniline/clay nanocomposite and its exfoliation exhibiting dendritic structure, Bull. Mater. Sci. 34 (2011) 635-638.
DOI: 10.1007/s12034-011-0174-5
Google Scholar
[13]
R. Zhen, Q. Chi, X. Wang, K. Yang, Y. Jiang, F. Li, B. Xue, Crystallinity, ion conductivity, and thermal and mechanical properties of poly(ethylene oxide)-illite nanocomposites with exfoliated illite as a filler, J. Appl. Polym. Sci. 133 (2016).
DOI: 10.1002/app.44226
Google Scholar
[14]
K.A. Carrado, A. Decarreau, S. Petit, F. Bergaya, G. Lagaly, Chapter 4. Synthetic Clay Minerals and Purification of Natural Clays, in F. Bergaya, B.K.G. Theng, G. Lagaly (Eds. ), Hanfbook of Clay Science, Elsevier Ltd. 2006, pp.115-139.
DOI: 10.1016/s1572-4352(05)01004-4
Google Scholar
[15]
J. Kostjukovs, A. Trubača-Boginska, A. Actiņš, EP2840063 B1 (2015).
Google Scholar
[16]
S. Sonpingkam, D. Pattavarakorn, Mechanical Properties of Sulfonated Poly (Ether Ether Ketone) Nanocomposite Membranes, Int. J. Chem. Eng. Appl. 5 (2014) 181-185.
DOI: 10.7763/ijcea.2014.v5.374
Google Scholar
[17]
J.A. Mbey, F. Thomas, C.J. Ngally Sabouang, D. Njopwouo, An insight on the weakening of the interlayer bonds in a Cameroonian kaolinite through DMSO intercalation, Appl. Clay Sci. 83-84 (2013) 327-335.
DOI: 10.1016/j.clay.2013.08.010
Google Scholar
[18]
P. Komadel, Acid activated clays: Materials in continuous demand, Appl. Clay. Sci. 131 (2016) 84-99.
DOI: 10.1016/j.clay.2016.05.001
Google Scholar