Impact of Biomass Derived Raw Material on Nitrogen Doped Porous Carbon Structure

Article Preview

Abstract:

Carbon compounds with large surface area can be used as electrocatalytic cathodes for fuel cells. Nitrogen atoms largely determine the properties of doped activated carbon, such as hardness, wear resistance, electrical resistance etc., and therefore there is a need for new scientific information on the properties and structure of modified carbon matrix. Wood char and activated carbons based on wood char, cellulose, black liquor, and fine cellulose sludge were obtained in different activation conditions and doped with dicyandiamide. The obtained N-doped carbon materials porous structures were compared taking into account preparation conditions and raw material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-103

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.V. Strelko, V.S. Kuts, P.A. Thrower, On the mehanism of possible influence of heteroatoms of nitrogen, boron and phosphorous in a carbon matrix on the catalytic activity of carbons in electron transfer reactions, Carbon, 38, (2000), 1499-1524.

DOI: 10.1016/s0008-6223(00)00121-4

Google Scholar

[2] S. Biniak, G. Szymansky, J. Siedlewski, A. Swiatkowski, The characterization of activated carbons with oxygen and nitrogen surface groups, Carbon, 35, (1997), 1799-1810.

DOI: 10.1016/s0008-6223(97)00096-1

Google Scholar

[3] K. Stanczyk, R. Dziembaj, Z. Piwowarska, S. Witkowski, Transformation of nitrogen structures in carbonization of model compounds determined by XPS, Carbon, 33, (1995), 1383-1392.

DOI: 10.1016/0008-6223(95)00084-q

Google Scholar

[4] В.В. Стрелко, Механизм влияния гетероатомов на химию активных углей , В кн.: Селективная сорбция и катализ на активных углях и неорганических ионитах. – К.: Наук. думка, 2008, С. 5-44.

Google Scholar

[5] В.С. Куць, В.Е. Клименко, В.В. Стрелко, Кластерные модели активного угля, В кн.: Селективная сорбция и катализ на активных углях и неорганических ионитах. – К.: Наук. думка, 2008, С. 45- 64.

Google Scholar

[6] Yu.A. Tarasenko, A.A. Bagreev, G.V. Reznik, V.V. Strelko, Reductive sorption methods for noble metals extraction from solutions, Intern. symp. (conference) Hydrometallurgy'94, – Cambridge. 1994, 517-526.

DOI: 10.1007/978-94-011-1214-7_32

Google Scholar

[7] A. Bagreev, J.A. Menendez, S. Kopyl, I. Dukhno, Yu. Zitsev, Yu. Tarasenko, T.J. Bandosz, Bituminous coal based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide, Carbon, 42 (2004), 469-476.

DOI: 10.1016/j.carbon.2003.10.042

Google Scholar

[8] S.V. Mikhalovsky, Yu.P. Zaitsev, Catalytic properties of activated carbons I. Gas-phase oxidation of hydrogen sulphide , Carbon, 35, (1997), 1367-1374.

DOI: 10.1016/s0008-6223(97)00104-8

Google Scholar

[9] EASAC policy report 29 (2016). www. easac. eu.

Google Scholar

[10] F. Su, Z. Tian, C.K. Poh, Z. Wang, S.H. Lim, Z. Liu, J. Lin, Pt Nanoparticles Supported on Nitrogen-Doped Porous Carbon Nanospheres as an Electrocatalyst for Fuel Cells. Chem. Mater., 22, (2010), 832-839.

DOI: 10.1021/cm901542w

Google Scholar

[11] C.H. Choi, S.H. Park, M.W. Chung, S.I.I. Woo, Easy and controlled synthesis of nitrogen-doped carbon, Carbon, 55, (2013), 98-107.

DOI: 10.1016/j.carbon.2012.12.014

Google Scholar

[12] S. Rasto, I. Kruusenberg, M. Vikkisk, U. Joost, E. Shulga, I. Kink, T. Kallio, K. Tammeveski, Highly active nitrogen – doped few-layer graphene/carbon nanotube composite electrocatalyst for oxygen reduction in alkaline media. Carbon, 73, (2014).

DOI: 10.1016/j.carbon.2014.02.076

Google Scholar

[13] M.G. Adsul, M.S. Singhvi, S.A. Gaikaiwari, D.V. Gokhale, Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass, Bioresource Technol., 102, (2011), 4304-4312.

DOI: 10.1016/j.biortech.2011.01.002

Google Scholar

[14] R.C. Bansal and M. Goyal, Activated carbon adsorption. Taylor &Francis, (2005).

Google Scholar

[15] H. Marsh and F. Rodriguez-Reinoso, Activated Carbon. Amsterdam: ElsevierScience, (2006).

Google Scholar