[1]
R. Tremblay, Inelastic seismic response of steel bracing members. Journal of Constructional Steel Research, 58 (2002) 665-701.
DOI: 10.1016/s0143-974x(01)00104-3
Google Scholar
[2]
G. Della Corte, M. D'Aniello, R. Landolfo, F.M. Mazzolani, Review of steel buckling-restrained braces, Steel Construction. 4 (2011) 85-93.
DOI: 10.1002/stco.201110012
Google Scholar
[3]
Q. Xie, State of the art of buckling-restrained braces in Asia, Journal of Constructional Steel Research. 61 (2005) 727-748.
DOI: 10.1016/j.jcsr.2004.11.005
Google Scholar
[4]
K. Deng, P. Pan, X. Nie, X. Xu, P. Feng, L. Ye, Study of GFRP Steel Buckling Restraint Braces, Journal of Composites for Construction. 19 (2015).
DOI: 10.1061/(asce)cc.1943-5614.0000567
Google Scholar
[5]
K.L. Deng, P. Pan, W. Li, Y.T. Xue, Development of a buckling restrained shear panel damper, Journal of Constructional Steel Research. 106 (2015) 311-321.
DOI: 10.1016/j.jcsr.2015.01.004
Google Scholar
[6]
P.C. Lin, K.C. Tsai, C.A. Chang, Y.Y. Hsiao, A.C. Wu, Seismic design and testing of buckling-restrained braces with a thin profile, Earthquake Engineering and Structural Dynamics. 45 (2016) 339-358.
DOI: 10.1002/eqe.2660
Google Scholar
[7]
F. Barbagallo, M. Bosco, A. Ghersi, E.M. Marino, P.P. Rossi, Effects of semi-rigid connections on seismic performance of steel frames with BRBs, XXVI Congresso C.T.A., 28-30 September 2017, Venice, Italy.
DOI: 10.1016/j.jcsr.2019.03.030
Google Scholar
[8]
CEN. EuroCode 8: Design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules for buildings, EN 1998-1. European Committee for Standardization, Bruxelles; (2004).
DOI: 10.3403/03244372u
Google Scholar
[9]
CEN. EuroCode 8: Design of structures for earthquake resistance – Part 3: Assessment and retrofitting of buildings, EN 1998-3. European Committee for Standardisation, Bruxelles; (2005).
Google Scholar
[10]
A. Longo, R. Montuori, V. Piluso, Plastic design of seismic resistant V-braced frames. Journal of Earthquake Engineering, 12 (2008) 1246-1266.
DOI: 10.1080/13632460802211867
Google Scholar
[11]
E.M. Marino, A unified approach for the design of high ductility steel frames with concentric braces in the framework of Eurocode 8, Earthquake Engineering and Structural Dynamics. 43 (2014) 97-18.
DOI: 10.1002/eqe.2334
Google Scholar
[12]
M. Bosco, E.M. Marino, P.P. Rossi, Design of steel frames equipped with BRBs in the framework of Eurocode 8, Journal of Constructional Steel Research 113 (2015) 43-57.
DOI: 10.1016/j.jcsr.2015.05.016
Google Scholar
[13]
CEN. EuroCode 3: Design of steel structures – Part 1-1: General rules and rules for buildings, EN 1993-1-1. European Committee for Standardisation, Bruxelles, (2003).
Google Scholar
[14]
S. Mazzoni, F. McKenna, M.H. Scott, G.L. Fenves et al., OpenSees Command Language Manual. Pacific Earthquake Engineering Research Center, University of California, Berkeley, (2007).
Google Scholar
[15]
FEMA 356: Prestandard and commentary for the seismic rehabilitation of buildings, Federal Emergency Management Agency, (2000).
Google Scholar
[16]
P.P. Rossi, Importance of isotropic hardening in the modeling of buckling restrained braces, Journal of Structural Engineering ASCE (2014) http: /dx. doi. org/10. 1061/(ASCE)ST. 1943-541X. 0001031.
DOI: 10.1061/(asce)st.1943-541x.0001031
Google Scholar
[17]
A. Zona, A. Dall'Asta, Elastoplastic model for steel buckling-restrained braces, Journal of Constructional Research 68 (2012) 118-125.
DOI: 10.1016/j.jcsr.2011.07.017
Google Scholar
[18]
P. Somerville et al. Development of ground motion time histories for phase 2 of the FEMA/SAC steel project. SAC Background Document. Report No. SAC/BD-99-03, SAC Joint Venture, 555 University Ave., Sacramento, (1997).
Google Scholar