The Thermal Stress Simulation of the Part Caused by Layer Thickness and Deposition Velocity in FDM Process

Article Preview

Abstract:

The paper mainly simulates the effects of layer thickness and deposition velocity on thermal stress in fused deposition modelling (FDM). Different values of these variables are considered in this process. The simulation results show the trends of thermal stress with the two variables and the simulation results provide a guidance for the practical fabrication.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-122

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zein I, Hutmacher DW, Tan KC, Teoh SW. Fused deposition modeling of novel scaffold architectures for tissue engineering application. Biomaterials, 2002, 23(4): 1169–1185.

DOI: 10.1016/s0142-9612(01)00232-0

Google Scholar

[2] Peng A, Xiao XM, Yue R. Process parameter optimization for fused depositionmodeling using response surface methodology combined with fuzzy inference system. Int J Adv Manuf Technol, 2014, 73(1–4): 87–100.

DOI: 10.1007/s00170-014-5796-5

Google Scholar

[3] Kantaros A, Karalekas D. Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process. Mater Des, 2013, 50: 44–50.

DOI: 10.1016/j.matdes.2013.02.067

Google Scholar

[4] W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu. The metallurgy and processing science of metal additive manufacturing, Int. Mater. Rev. (2016), p.1–46.

DOI: 10.1080/09506608.2015.1116649

Google Scholar

[5] J. Ding, P. Colegrove, J. Mehnen et al. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts, Comput. Mater. Sci., 50 (2011), p.3315–3322.

DOI: 10.1016/j.commatsci.2011.06.023

Google Scholar

[6] D. Deng, H. Murakawa. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements, Comput. Mater. Sci., 37 (2006), p.269–277.

DOI: 10.1016/j.commatsci.2005.07.007

Google Scholar

[7] R.J. Moat, A.J. Pinkerton, L. Li, P.J. Withers, M. Preuss. Residual stresses in laser direct metal deposited Waspaloy, Mater. Sci. Eng. A, 528 (2011), p.2288–2298.

DOI: 10.1016/j.msea.2010.12.010

Google Scholar

[8] A.H. Nickel, D.M. Barnett, F.B. Prinz. Thermal stresses and deposition patterns in layered manufacturing, Materials Science and Engineering A317 (2001) 59 – 64.

DOI: 10.1016/s0921-5093(01)01179-0

Google Scholar

[9] Y Zhang and K Chou*. A parametric study of part distortions in fused deposition modelling using three-dimensional finite element analysis. Proc. Inst. Mech. Eng. Part B – J. Eng. Manuf. 2008, 222: 959–967.

DOI: 10.1243/09544054jem990

Google Scholar

[10] Liu Xinhua, Li Shengpeng, Liu Zhou, Zheng Xianhua, Chen Xiaohu, Wang Zhongbin. An investigation on distortion of PLA thin-plate part in the FDM process. Int J Adv Manuf Technol, 2015, 79: 1117–1126.

DOI: 10.1007/s00170-015-6893-9

Google Scholar

[11] Lindgren, L.E. Lindgren, Numerical modelling of welding, Comput. Methods Appl. Mech. Eng., 195 (48) (2006), p.6710–6736.

Google Scholar

[12] Nickel, A.H. Nickel, D.M. Barnett, F.B. Prinz, Thermal stresses and deposition patterns in layered manufacturing, Mater. Sci. Eng. A, 317 (1) (2001), p.59–64.

DOI: 10.1016/s0921-5093(01)01179-0

Google Scholar

[13] Alimardani, M. Alimardani, E. Toyserkani, J.P. Huissoon. A 3D dynamic numerical approach for temperature and thermal stress distributions in multilayer laser solid freedom fabrication process, Opt. Laser Eng., 45 (2007), p.1115–1130.

DOI: 10.1016/j.optlaseng.2007.06.010

Google Scholar

[14] Chew, Y. Chew, J.H.L. Pang, G. Bi, B. Song. Thermo-mechanical model for simulating laser cladding induced residual stresses with single and multiple clad beads, J. Mater. Process. Technol., 224 (2015), p.89–101.

DOI: 10.1016/j.jmatprotec.2015.04.031

Google Scholar

[15] Denlinger, E.R. Denlinger, J.C. Heigel, P. Michaleris. Residual stress and distortion modeling of electron beam direction manufacturing Ti-6Al-4V, Proc. Inst. Mech. Eng. B: J. Eng. Manuf. (2015) Vol. 229(10): 1803-1813.

DOI: 10.1016/b978-0-12-811820-7.00011-2

Google Scholar

[16] Ding, J. Ding, P. Colegrove, J. Mehnen, S. Ganguly, P.M. Sequeira Almeida, F. Wang, S. Williams. Thermo-nechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts, Comput. Mater. Sci., 50 (12) (2011).

DOI: 10.1016/j.commatsci.2011.06.023

Google Scholar