[1]
Zein I, Hutmacher DW, Tan KC, Teoh SW. Fused deposition modeling of novel scaffold architectures for tissue engineering application. Biomaterials, 2002, 23(4): 1169–1185.
DOI: 10.1016/s0142-9612(01)00232-0
Google Scholar
[2]
Peng A, Xiao XM, Yue R. Process parameter optimization for fused depositionmodeling using response surface methodology combined with fuzzy inference system. Int J Adv Manuf Technol, 2014, 73(1–4): 87–100.
DOI: 10.1007/s00170-014-5796-5
Google Scholar
[3]
Kantaros A, Karalekas D. Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process. Mater Des, 2013, 50: 44–50.
DOI: 10.1016/j.matdes.2013.02.067
Google Scholar
[4]
W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu. The metallurgy and processing science of metal additive manufacturing, Int. Mater. Rev. (2016), p.1–46.
DOI: 10.1080/09506608.2015.1116649
Google Scholar
[5]
J. Ding, P. Colegrove, J. Mehnen et al. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts, Comput. Mater. Sci., 50 (2011), p.3315–3322.
DOI: 10.1016/j.commatsci.2011.06.023
Google Scholar
[6]
D. Deng, H. Murakawa. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements, Comput. Mater. Sci., 37 (2006), p.269–277.
DOI: 10.1016/j.commatsci.2005.07.007
Google Scholar
[7]
R.J. Moat, A.J. Pinkerton, L. Li, P.J. Withers, M. Preuss. Residual stresses in laser direct metal deposited Waspaloy, Mater. Sci. Eng. A, 528 (2011), p.2288–2298.
DOI: 10.1016/j.msea.2010.12.010
Google Scholar
[8]
A.H. Nickel, D.M. Barnett, F.B. Prinz. Thermal stresses and deposition patterns in layered manufacturing, Materials Science and Engineering A317 (2001) 59 – 64.
DOI: 10.1016/s0921-5093(01)01179-0
Google Scholar
[9]
Y Zhang and K Chou*. A parametric study of part distortions in fused deposition modelling using three-dimensional finite element analysis. Proc. Inst. Mech. Eng. Part B – J. Eng. Manuf. 2008, 222: 959–967.
DOI: 10.1243/09544054jem990
Google Scholar
[10]
Liu Xinhua, Li Shengpeng, Liu Zhou, Zheng Xianhua, Chen Xiaohu, Wang Zhongbin. An investigation on distortion of PLA thin-plate part in the FDM process. Int J Adv Manuf Technol, 2015, 79: 1117–1126.
DOI: 10.1007/s00170-015-6893-9
Google Scholar
[11]
Lindgren, L.E. Lindgren, Numerical modelling of welding, Comput. Methods Appl. Mech. Eng., 195 (48) (2006), p.6710–6736.
Google Scholar
[12]
Nickel, A.H. Nickel, D.M. Barnett, F.B. Prinz, Thermal stresses and deposition patterns in layered manufacturing, Mater. Sci. Eng. A, 317 (1) (2001), p.59–64.
DOI: 10.1016/s0921-5093(01)01179-0
Google Scholar
[13]
Alimardani, M. Alimardani, E. Toyserkani, J.P. Huissoon. A 3D dynamic numerical approach for temperature and thermal stress distributions in multilayer laser solid freedom fabrication process, Opt. Laser Eng., 45 (2007), p.1115–1130.
DOI: 10.1016/j.optlaseng.2007.06.010
Google Scholar
[14]
Chew, Y. Chew, J.H.L. Pang, G. Bi, B. Song. Thermo-mechanical model for simulating laser cladding induced residual stresses with single and multiple clad beads, J. Mater. Process. Technol., 224 (2015), p.89–101.
DOI: 10.1016/j.jmatprotec.2015.04.031
Google Scholar
[15]
Denlinger, E.R. Denlinger, J.C. Heigel, P. Michaleris. Residual stress and distortion modeling of electron beam direction manufacturing Ti-6Al-4V, Proc. Inst. Mech. Eng. B: J. Eng. Manuf. (2015) Vol. 229(10): 1803-1813.
DOI: 10.1016/b978-0-12-811820-7.00011-2
Google Scholar
[16]
Ding, J. Ding, P. Colegrove, J. Mehnen, S. Ganguly, P.M. Sequeira Almeida, F. Wang, S. Williams. Thermo-nechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts, Comput. Mater. Sci., 50 (12) (2011).
DOI: 10.1016/j.commatsci.2011.06.023
Google Scholar