Experimental Research on Electroforming Nano-ZrO2 Reinforced Cu-Matrix Composite Aided by Pulse Power

Article Preview

Abstract:

Prepared the nanoZrO2 reinforced Cu-matrix composite by pulse electroforming. The effects of the content of nanoZrO2 particle in the casting solution, average cathodic current density, duty cycle, pulse frequency and ultrasonic power on the content of nanoZrO2 in the electroforming Cu-matrix composite have been studied. The microhardness and surface morphology of Cu-ZrO2 composite were analyzed. The experimental results demonstrate that the maximum content of nanoZrO2 in the electroforming Cu-ZrO2 composite is 2.94%, microhardness is 492 HV, which is significantly improved compared with pulse pure copper’s 337 HV, when the content of nanoZrO2 is 40 g/L, average cathodic current density is 4A/dm2, duty cycle is 0.2 , pulse frequency is 1100 Hz and ultrasonic power is 20w .The surface of composite prepared by pulse electroforming is more smooth, organization is denser, grain is finer and agglomeration of nanoZrO2 particles is fewer compared with Direct-current electroforming nanoZrO2 reinforced Cu-ZrO2 composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-105

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.G. Zhu, Z.L. Wang, Development and application of electroforming technology, Electromachining & Mould, (2006) (5): 1-5.

Google Scholar

[2] D. Zhu, The electrochemical principle, Beihang University Press, Beijing, (1999).

Google Scholar

[3] H. Zhang, Z.C. Guo, X.Y. Han, Pulse electrodeposition RE-N-i W-P-SiC Composite coating technology, Mechanical engineering materials, 28(2004) (7): 29-34.

Google Scholar

[4] J.Y. Fei, G.D. Wilcox, Electrodeposition of Zn-Co alloys with pulse containing reverse current, Electrochimica Acta. 50(2005): 2693-2698.

DOI: 10.1016/j.electacta.2004.11.014

Google Scholar

[5] L.M. Chang, M.Z. An, H.F. Guo, et al., Microstructure and properties of N-i Co/nano-Al2O3 composite coatings by pulse reversal current electrodeposition, Applied Surface Science, 253(2006): 2132-2137.

DOI: 10.1016/j.apsusc.2006.04.018

Google Scholar

[6] Z.W. ZHU, D. ZHU, N.S. QU, W.N. LEI, Pulse electroforming of nickel under perturbation of hard particles, Trans. Nonferrous Met. Soc. China, 15(2005) (3): 251- 254.

Google Scholar

[7] E. G. Wolfgang, H.S. Hansal,  R. Mann,  M. Halmdienst,  J. Schalko,  F. Keplinger,  P. Svasek, Microgalvanic nickel pulse plating process for the fabrication of thermal microactuators, Microsystem Technologies, 20(2014)(4-5): 681-689.

DOI: 10.1007/s00542-013-2007-5

Google Scholar

[8] W.N. LEI, D. Zhu, N.S. Qu, Synthesis of nano crystalline nickel in pulse deposition, Trans IMF , 80(2002)(6): 168- 171.

Google Scholar

[9] N.S. Qu, D. Zhu, K.C. Chan, et al, Pulse electrodeposition of nano crystalline nickel using ultra narrow pulse width and high peak current density, Surface and Coatings Technology. 168(2003): 123- 128.

DOI: 10.1016/s0257-8972(03)00014-8

Google Scholar

[10] S. Singh, S. Maheshwari, P. C. Pandey, Some investigations into the electric discharge machining of hardened tool steel using different electrode materials. Journal of Materials Processing Technology. 149(2004): 272-277.

DOI: 10.1016/j.jmatprotec.2003.11.046

Google Scholar

[11] H.Y. Zheng, M.Z. An, Electrode position of Zn-Ni-Al2O3 nanocomposite coatings under ultrasound conditions, Journal of Alloys and Compounds. 459(2008): 548-552.

DOI: 10.1016/j.jallcom.2007.05.043

Google Scholar

[12] K.P. WONG, K.C. CHAN, T.M. YUE, A study of hardness and grain size in pulse current electroforming of nickel using different shaped waveforms, Journal of Applied Electrochemistry. 31(2001): 25- 34.

Google Scholar

[13] J.Y. FEI, G.Z. LIANG, W.L. XIN, Composition and Morphology of Zn-Co Alloy Coatings Deposited by Means of Pulse Plating Containing Reverse Current, Journal of Wuhan University of Technology. 3(2007): 417- 421.

DOI: 10.1007/s11595-006-3417-3

Google Scholar

[14] A.R. Despic, K.I. Popov, Transport Controlled Deposition and Dissolution of Metals in Molten Aspects of Electrochemistry, Plenum Press, New York, (1972).

Google Scholar

[15] A.R. Despic, K.I. Popov, Transport Controlled Deposition and Dissolution of Metals in Molten Aspects of Electrochemistry, (1972).

Google Scholar

[16] F. Touyeras,  J.Y. Hihn,  X. Bourgoin,  B. Jacques,  L. Hallez,  V. Branger, Effects of ultrasonic irradiation on the properties of coatings obtained by electroless plating and electro plating, Ultrasonics Sonochemistry. 12(2004)(1-2): 9- 13.

DOI: 10.1016/j.ultsonch.2004.06.002

Google Scholar