Preparation and Characterization of Hierarchically Porous SiO2@C@MnO2 Monoliths

Article Preview

Abstract:

Hierarchical porous SiO2@C@MnO2 monoliths have been fabricated by two step approaches: Elemental carbon was covered the internal surface of porous silica monoliths with impregnation and carbonized in inert atmosphere, and MnO2 was directly grown on the skeleton of SiO2@C accompanied by redox reaction between C and KMnO4. The effects of glucose and KMnO4 concentrations, and hydrothermal reaction on the morphology of MnO2 particles on the surface of SiO2 monoliths were investigated in detail. The results showed that the optimal factors of reaction condition involved 0.08 mol·L-1 glucose solution, 0.03 mol·L-1 KMnO4 solution and the reaction time of 5 h. SEM images and BET results indicated that the macroporous structure of the as-prepared material was preserved after modification, while the specific surface area and pore volume decreased with increasing amount of MnO2 to some degree. The XPS spectra of SiO2@C@MnO2 is in good agreement with reported data in MnO2. The crystal phase of MnO2 was α-MnO2 after thermal treatment at the temperature of 600 °C from the XRD patterns. Three-dimensional porous well-defined morphological SiO2@C@MnO2 be promising materials for the catalytic elimination of air pollutants since large quantities can be obtained from porous structure combined with α-MnO2 equipped with high active performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

224-230

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Kesselmeier, M. Staudt, Biogenic Volatile Organic Compounds (VOC): an overview on emission, Physiology and Ecology, 33(1) (1999) 23-88.

Google Scholar

[2] A.P. Jones, Indoor air quality and health, 33(28) (1999) 4535-4564.

Google Scholar

[3] C. Lahousse, A. Bernier, P. Grange, et al., Evaluation of gamma-MnO2 as a VOC removal catalyst: comparison with a noble metal catalyst, J. Catal. 178(1) (1998) 214-225.

DOI: 10.1006/jcat.1998.2148

Google Scholar

[4] G. Leson, A.M. Winer, Biofiltration-aninnovativeair-pollutioncontroltechnology for VOC emissions, J. Air Waste Manage. 41(8) (1991) 1045-1054.

DOI: 10.1080/10473289.1991.10466898

Google Scholar

[5] K.L. Foster, R.G. Fuerman, J. Economy, et al., Adsorption characteristics of trace Volatile Organic-compounds in gasstreamsontoactivatedcarbon-fibers, Chem. Mater. 4(5) (1992) 1068-1073.

DOI: 10.1021/cm00023a026

Google Scholar

[6] K. Everaert, Catalytic combustion of volatile organic compounds, J. Hazard. Mater. 109(1-3) (2004) 113-139.

Google Scholar

[7] H.S. Kim, T.W. Kim, H.L. Koh, et al., Complete benzene oxidation over Pt-Pd bimetal catalyst supported on γ-alumina: influence of Pt-Pd ratio on the catalytic activity, Appl. Catal. A-Gen. 280(2) (2005) 125-131.

DOI: 10.1016/j.apcata.2004.02.027

Google Scholar

[8] J.S. Yang, W.Y. Jung, G.D. Lee, et al., Catalytic combustion of benzene over metal oxides supported on SBA-15, J. Ind. Eng. Chem. 14(6) (2008) 779-784.

DOI: 10.1016/j.jiec.2008.05.008

Google Scholar

[9] T. Li, S. Chiang, B. Liaw, Y. Chen, Catalytic oxidation of benzene over CuO/Ce1-xMnxO2 catalysts, Appl. Catal. B-Environ. 103(1-2) (2011) 143-148.

DOI: 10.1016/j.apcatb.2011.01.020

Google Scholar

[10] W.B. Li, J.X. Wang, H. Gong, Catalytic combustion of VOCs on non-noble metal catalysts, Catal. Today 148(1-2) (2009) 81-87.

DOI: 10.1016/j.cattod.2009.03.007

Google Scholar

[11] S. Ojala, S. Pitk Aho, T. Laitinen, et al., Catalysis in VOC Abatement, Top Catal.54(16-18) (2011) 1224-1256.

DOI: 10.1007/s11244-011-9747-1

Google Scholar

[12] S. Liang, F. Teng, G. Bulgan, R. Zong, Y. Zhu, Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation, The J. Phys. Chem. C 112(14) (2008) 5307-5315.

DOI: 10.1021/jp0774995

Google Scholar

[13] Y. Yang, J. Huang, S. Wang, et al., Catalytic removal of gaseous unintentional POPs on manganese oxide octahedral molecular sieves, Appl. Catal. B-Environ. 142-143 (2013) 568-578.

DOI: 10.1016/j.apcatb.2013.05.048

Google Scholar

[14] F. Shi, F. Wang, H. Dai, J. Dai, et al., Rod-, flower-, and dumbbell-like MnO2: Highly active catalysts for the combustion of toluene, Appl. Catal. A-Gen.433-434 (2012) 206-213.

DOI: 10.1016/j.apcata.2012.05.016

Google Scholar

[15] W. Tang, X. Wu, D. Li, et al., Oxalate route for promoting activity of manganese oxide catalysts in total VOCs' oxidation: effect of calcination temperature and preparation method, J. Mater. Chem. A 2(8) (2014) 2544-2554.

DOI: 10.1039/c3ta13847j

Google Scholar

[16] L.F. Liotta, H. Wu, G. Pantaleo, et al., Co3O4 nanocrystals and Co3O4-MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: a review, Catal. Sci. Techno. 3(12) (2013) 3085-3102.

DOI: 10.1039/c3cy00193h

Google Scholar

[17] Y. Xia, H. Dai, H. Jiang, L. Zhang, Three-dimensional ordered mesoporous cobalt oxides: highly active catalysts for the oxidation of toluene and methanol, Catal. Commun. 11 (2010) 1171-1175.

DOI: 10.1016/j.catcom.2010.07.005

Google Scholar

[18] G. Bai, H. Dai, J. Deng, et al., Porous Co3O4 nanowires and nanorods: highly active catalysts for the combustion of toluene, Appl. Catal. A-Gen.450 (2013) 42-49.

DOI: 10.1016/j.apcata.2012.09.054

Google Scholar

[19] G. Bai, H. Dai, J. Deng, Y. Liu, K. Ji, Porous NiO nanoflowers and nanourchins: Highly active catalysts for toluene combustion, Catal. Commun. 27 (2012) 148-153.

DOI: 10.1016/j.catcom.2012.07.008

Google Scholar

[20] Y. Xia, H. Dai, H. Jiang, et al., Mesoporous chromia with ordered three-dimensional structures for the complete oxidation of toluene and ethyl acetate, Environ. Sci. Technol 43(21) (2009) 8355-8360.

DOI: 10.1021/es901908k

Google Scholar

[21] Y. Ke, S. Lai, Comparison of the catalytic benzene oxidation activity of mesoporous ceria prepared via hard-template and soft-template, Micropor. Mesopor. Mat. 198 (2014) 256-262.

DOI: 10.1016/j.micromeso.2014.07.054

Google Scholar

[22] Y. Li, W. Shen, Morphology-dependent nanocatalysis on metal oxides, Sci. China. Chem. 55(12) (2012) 2485-2496.

DOI: 10.1007/s11426-012-4565-2

Google Scholar

[23] I. Atribak, A. Bueno-Lopez, A. Garcia-Garcia, P. Navarro, D. Frias, M. Montes, Catalytic activity for soot combustion of birnessite and cryptomelane, Appl. Catal. B-Environ. 93(3-4) (2010) 267-273.

DOI: 10.1016/j.apcatb.2009.09.038

Google Scholar

[24] F. Wang, H. Dai, J. Deng, et al., Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene, Environ. Sci. Technol. 46(7) (2012) 4034-4041.

DOI: 10.1021/es204038j

Google Scholar

[25] X. Guo, R. Wang, H. Yu, et al., Spontaneous preparation of hierarchically porous silica monoliths with uniform spherical mesopores confined in a well-defined macroporous framework, Dalton. T. 44(30) (2015) 13592-13601.

DOI: 10.1039/c5dt01672j

Google Scholar

[26] J. Liao, D. Higgins, G. Lui, et al., Multifunctional TiO2-C/MnO2 core-double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries, Nano. Lett. 13(11) (2013) 5467-5473.

DOI: 10.1021/nl4030159

Google Scholar

[27] M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials, Chem. Mater. 13(10) (2001) 3169-3183.

DOI: 10.1021/cm0101069

Google Scholar

[28] L. Mai, F. Dong, X. Xu, et al., Cucumber-Like V2O5/poly(3,4-ethylenedioxythiophene)&MnO2 nanowires with enhanced electrochemical cyclability, Nano. Lett. 13(2) (2013) 740-745.

DOI: 10.1021/nl304434v

Google Scholar

[29] K. Qiu, H. Yan, D. Zhang, et al., Hierarchical 3D Co3O4@MnO2 core/shell nanoconch arrays on Ni foam for enhanced electrochemical performance, J. Solid. State. Electr. 19(2) (2015) 391-401.

DOI: 10.1007/s10008-014-2611-z

Google Scholar