Preparation of High Density BaZr0.97Y0.03O3-δ Ceramic and its Interaction with Titanium Melt

Article Preview

Abstract:

In this paper, the BaZrO3(BZ) and BaZr0.97Y0.03O3-δ (BZY3) powders were prepared by using the industrial grade BaCO3, ZrO2 and Y2O3 powders combining the conventional solid state reaction. The BaZrO3(BZ) and BaZr0.97Y0.03O3-δ (BZY3) ceramics were fabricated at 1750°C. The effect of ball milling time and sintering aid (TiO2) on the sinterability of BaZr0.97Y0.03O3-δ (BZY3) ceramics were investigated, and the improved stability of BaZrO3 refractory with Y2O3 additive were studied according to the refractory-metal interaction. The results revealed that the particle size of BZY3 powders decreased first and then increased with the increasing of ball milling time from 6h to 12h, and the minimum particle size was only 2.252μm at 8h. When 2wt.%TiO2 was added, the sintered pellet of BZY3 was the most densest and the relative density was above 95%. After melting the Ti2Ni alloy on the BZY and BZ ceramics, the thickness erosion layer of BaZrO3 and BZY3 refractories and Ti2Ni alloy is approximately 50μm and 20μm respectively, showing that BZY3 was more stable than BaZrO3 refractory.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

261-266

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Sakamoto, K. Yoshikawa, T. Kusamichi, ISIJ Int.32(1992)616-624.

Google Scholar

[2] J.P. Kuang, R.A. Harding, J. Campbell, J. Mater. Sci. Technol. 16(2000)1007-1016.

Google Scholar

[3] G. Lutjering, J.C. Williams, Titanium, Springer, Berlin, 2007, pp.1-2.

Google Scholar

[4] W. Kroll, Trans. Electrochem. Soc. 78 (1940) 35-47.

Google Scholar

[5] K.A. Gschneidner, N. Kippenhan, O.D. McMaster, Thermo Chemistry of the Rare Earths, Rare Earth Information Center, Ames, IA, (1973).

Google Scholar

[6] R.L. Saha, T.K. Nandy, R.D.K. Misra, K.T. Jacob, Metall. Trans. B 21 (1990)559-566.

Google Scholar

[7] S.K. Sadrnezhaad, S.B. Raz, Metall. Mater. Trans. B 36 (2005) 395-403.

Google Scholar

[8] A. Kostov, B. Friedrich, Comput. Mater. Sci. 38 (2006) 374-385.

Google Scholar

[9] H.R. Zhang, X.X. Tang, C.G. Zhou, H. Zhang, S.W. Zhang, J. Eur. Ceram. Soc. 33(2013) 925-934.

Google Scholar

[10] J.L. MacmanuseDriscoll, S.R. Foltynl, Q.X. Jia, Nat. Mater. 3 (2004) 439-443.

Google Scholar

[11] H.G. Bohn, T. Schober, J. Am. Ceram. Soc. 83 (2000) 768-772.

Google Scholar

[12] C. Wei, M.Y. Li, G.Y. Chen, et al., Special Cast. Nonferrous Alloys 36 (2016) 390-393.

Google Scholar

[13] Z. Zhang, K.L. Zhu, L.J. Liu, X.G. Lu, C.H. Li, J. Chin. Cream. Soc. 41 (2013)1272-1283.

Google Scholar

[14] J. He, C. Wei, M.Y. Li, et al., Trans. Nonferrous Met. Soc. China 6 (2015) 1505-1511.

Google Scholar

[15] G.Y. Chen, Z.W. Chen, S.S. et al., J. Chin. Ceram. Soc.44 (2016) 892-897.

Google Scholar

[16] L. Bi, E. Fabbri, Z.Q. Sun, E. Sinteractivity, Solid State Ion. 196 (2011) 59-64.

Google Scholar

[17] Z.N Yang, J. Li, J.B. Qiu, X. Yu, D.C. Zhou, Spectr. Anal. 33 (2013) 19-22.

Google Scholar

[18] G.S. Reddy, R. Bauri, J. Alloy Compd. 688 (2016) 1039-1046.

Google Scholar

[19] B. Peter, U. Tesuya, M.H. Sossina, J. Mater. Res. 22 (2007) 1322-1330.

Google Scholar

[20] P. Babilo, SM. Haile, J. Am. Ceram. Soc. 88(2005) 2362-2368.

Google Scholar

[21] M. Gao, R.J. Cui, L.M. Ma, et al., J. Mater. Process Technol. 211 (2011) 2004-(2011).

Google Scholar

[22] A. Sin, B. El Montaser, P. Odier, J. Am. Ceram. Soc. 85 (2010)1928-(1932).

Google Scholar

[23] T. Schober, H. G. Bohn, Solid State Ion. 127 (2000) 351-360.

Google Scholar

[24] D. Gao, R. Guo, J. Alloy Compd.493(2010) 288-293.

Google Scholar

[25] D.Y. Gao, R.S. Guo, Mater. Lett. 64(2010) 573-575.

Google Scholar

[26] S.B.C. Duval, P. Holtappels, Solid State Ion. 179 (2008)1112-1115.

Google Scholar

[27] J.H. Tong, J. Mater. Chem. 20(2010) 6333-6341.

Google Scholar

[28] B. Bendjeriou-Sedjerari, J. Loricourt, D. Goeuriot, P. Goeuriot, J. Alloy Compd. 509 (2011) 6175-6183.

DOI: 10.1016/j.jallcom.2011.02.088

Google Scholar

[29] H. Wang, R.Peng, X.Wu, C. Xia, J. Am. Ceram. Soc. 92(2009) 2623-2629.

Google Scholar

[30] A.H. Liu, B.S. Li, Y.W. Sui, D.G. Yan, J.J. Guo, Rare Metal Mater. Eng. 41 (2012)554-558.

Google Scholar