Oxidation Resistance and Mechanical Enhancement of Ferro-Silicon Nitride on Silica Sol Bonded SiC Castable

Article Preview

Abstract:

Silica sol bonded SiC castable have obvious advantages of slag resistance and thermal stress damage resistance. However, they are not widely used due to their weak oxidation resistance at high temperature. Ferro-silicon nitride is added to improve the oxidation resistance of SiC castable. The efficiency of SiC castable in the presence of different contents of ferro-silicon nitride was evaluated through sintered properties, isothermal oxidation behaviors and microstructural analysis. The results show that sample with 5wt% ferro-silicon nitride possessed good mechanical behavior after heat treatment due to its acceleration for the formation of SiC whiskers. At 1500 °C, Isothermal oxdation curve indicated that the oxidation progress performed two-stage model controlled by chemical reaction at the earlier period and diffusion at the later period. Sample with 5wt% ferro-silicon nitride present faster oxidation rate (kc) at the earlier stage versus the contrast sample (0.025 mg·cm-2·min-1 vs 0.087 mg·cm-2·min-1), and slower oxidation rate (kd) at the later stage (0.145 mg·cm-2·min-1 vs 0.137 mg·cm-2·min-1). After 470 min isothermal oxidation test, the weigh gain of sample with 0 wt% ferro-silicon nitride exceeded the sample with 5wt% ferro-silicon nitride.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

286-290

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. van der Geer, J.A.J. Hanraads, R.A. Lupton, The art of writing a scientific article, J. Sci. Commun. 163 (2000) 51-59.

Google Scholar

[2] D. Chen, A. Huang, H.Z. Gu, M.J. Zhang, Z.J. Shao, Corrosion of Al2O3–Cr2O3 refractory lining for high-temperature solid waste incinerator, Ceram. Int. 41 (2015) 14748-14753.

DOI: 10.1016/j.ceramint.2015.07.202

Google Scholar

[3] C.H. Jung, T. Matsuto, N. Tanaka, T. Okada, Metal distribution ill incineration residues of municipal solid waste (MSW) in Japan, Waste Management, 24 (2004) 381-391.

DOI: 10.1016/s0956-053x(03)00137-5

Google Scholar

[4] H.W. Kuo, S.L. Shu, C.C. Wu, J.S. Lai, Characteristics of medical waste in Taiwan, Water Air Soil Poll. 114 (1999) 413-421.

Google Scholar

[5] M. Matsui, Y. Kashima, M. Kawano, M. Matsuda, K. Ambe, T. Wakimoto, R. Doi, Dioxin-like potencies and extractable organohalogeas (EO) in medical, municipal and domestic waste incinerator ashes in Japan, Chemosphere, 53 (2003) 971-980.

DOI: 10.1016/s0045-6535(03)00587-3

Google Scholar

[6] O. Hjelmar, Disposal strategies for municipal solid waste incineration residues, J. hazard. Mater. 47 (1996) 345-368.

DOI: 10.1016/0304-3894(95)00111-5

Google Scholar

[7] X.C. Pan, J.H. Yan, Z.M. Xie, Detoxifying PCDD/Fs and heavy metals in fly ash from medical waste incinerators with a DC double arc plasma torch, J. Environ. Sci. 25 (2013) 1362-1367.

DOI: 10.1016/s1001-0742(12)60196-x

Google Scholar

[8] D. Chen, H.Z. Gu, A. Huang, Z.J. Shao. Enhancement of bonding network for silica sol bonded SiC castables by reactive micropowder, Ceram. Int. 43 (2017) 8850-8857.

DOI: 10.1016/j.ceramint.2017.04.019

Google Scholar

[9] D. Chen, H.Z. Gu, A. Huang, Z.J. Shao. Towards chrome-free of high-temperature solid waste gasifier through in-situ SiC whisker enhanced silica sol bonded SiC castable, Ceram. Int. 43 (2017) 3330-3338.

DOI: 10.1016/j.ceramint.2016.11.174

Google Scholar

[10] J. Ding, C.J. Deng, W.J. Yuan, H.X. Zhu, X.J. Zhang, Novel synthesis and characterization of silicon carbide nanowires on graphite flakes, Ceram. Int. 40 (2014) 4001-4007.

DOI: 10.1016/j.ceramint.2013.08.051

Google Scholar

[11] T. Feng, H.J. Li, S.L. Wang, M.H. Hu, L. Liu. Boron modified multi-layer MoSi2-CrSi2-SiC-Si oxidation protective coating for carbon/carbon composites, Ceram. Int. 40 (2014) 15167-15173.

DOI: 10.1016/j.ceramint.2014.06.131

Google Scholar

[12] Q.G. Fu, H.J. Li, Y.J. Wang, K.Z. Li, X.H. Shi. B2O3 modified SiC–MoSi2 oxidation resistant coating for carbon/carbon composites by a two-step pack cementation, Corros. Sci. 51 (2009) 2450-2454.

DOI: 10.1016/j.corsci.2009.06.033

Google Scholar

[13] X. Yong, L. Cao, J. Huang, W.H. Kong, J.B. Su, C.Y. Li, H.B. Ouyang, L. Zhou, J.T. Liu, Microstructure and oxidation protection of a MoSi2/SiO2-B2O3-Al2O3 coating for SiC-coated carbon/carbon composites, Surf. Coat. Tech. 311 (2017) 63-69.

DOI: 10.1016/j.surfcoat.2016.12.102

Google Scholar

[14] S. Wu, Y. Wang, Q. Guo, B. Guo, L. Luo, Oxidation protective silicon carbide coating for C/SiC composite modified by a chromium silicide-chromium carbide outer layer, Mater. Sci. Eng. A, 644 (2015) 268-274.

DOI: 10.1016/j.msea.2015.07.081

Google Scholar

[15] J.H. Chen, J.L. Sun, X.L. Deng. Influence of ferro-silicon nitride on oxidation resistance of Al2O3-SiC-C castable for trough, Refract. 39 (2005) 50-53.

Google Scholar