Measuring the Changes in Copper Nanopowder Conductivity during Heating as a Method for Diagnosing its Thermal Stability

Article Preview

Abstract:

This work researches the impact of the temperature of compacted copper nanopowder on the amperage of the current flowing through the nanopowder sample. It was determined that upon reaching its oxidation temperature (~ 1900C), the copper nanopowder started conducting electricity, and at 280-320°C electric breakdown of sample was occurring. This is caused to irreversible processes taking place in nanomaterials during heating, such as sintering and mass-transfer, those processes leading to the formation of conductivity channels. This speaks in favor of an evident dependency between copper nanopowder conductivity and the chemical transformations taking place in it; this allows for recommending this research method for instant diagnostics of copper nanopowders.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

146-151

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wendlandt, W.W., Themal Methods of Analysis, 2nd ed., John Wiley & Sons, NY, (1974).

Google Scholar

[2] Il'in A.P., Root L.O., and Mostovshchikov A.V., The Rise of Energy Accumulated in Metal Nanopowders, Techn. Phys. 57 (2012) 1178–1180.

DOI: 10.1134/s1063784212080129

Google Scholar

[3] Cox J.D., Wagman D.D., Medvedev V.A., CODATA Key Values for Thermodynamics. New York, USA, Hemisphere Publishing Corp., (1989).

Google Scholar

[4] Gubarev F.A., Fedorov V.F., Fedorov K.V., Shiyanov D.V., and Evtushenko G.S., Copper bromide vapour laser with an output pulse duration of up to 320 ns, Quantum Electron., Vol. 46, 1 (2016) 57–60.

DOI: 10.1070/qe2016v046n01abeh015707

Google Scholar

[5] Torgaev S.N., Gubarev F.A., Boichenko A.M., Evtushenko G.S., and Zhdaneev O.V., Reduction of copper bromide molecules in the plasma of a CuBr laser during the interpulse period, Russ. Phys. J., Vol. 54, 2 (2011) 221-225.

DOI: 10.1007/s11182-011-9600-9

Google Scholar

[6] Sukhanov V.B., Fedorov V.F., Gubarev F.A., Troitskiy V.O., and Evtushenko G.S., Capacitive-discharge-pumped copper bromide vapour laser, Quantum Electron., Vol. 37, 7 (2007) 603-604.

DOI: 10.1070/qe2007v037n07abeh013605

Google Scholar

[7] Gubarev F.A., Mostovshchikov A.V., Klenovskii M.S., Il'in A.P., and Lin Li, Copper bromide laser monitor for combustion processes visualization, Progress in Electromagnetic Research Symposium, PIERS 2016 – Proceedings, 7735091 (2016) 2666-2670.

DOI: 10.1109/piers.2016.7735091

Google Scholar

[8] Gromov A.A., Teipel U., Metal Nanopowders: Production, Characterization, and Energetic Applications, Wiley-VCH, Weinheim, (2014).

DOI: 10.1002/9783527680696

Google Scholar

[9] Smirnova V.V., A.P. Ilyin, A.S. Brichkov, A.V. Zabolotskaya, The Electric Field and Ultrasonic Treatment Casing of Titanium Dioxide, Key Eng. Mat. 670 (2016) 3-8.

DOI: 10.4028/www.scientific.net/kem.670.3

Google Scholar

[10] Hauffe K., Reactions in and on solids, U.S. Atomic Energy Commission, Division of Technical Information, (1962).

Google Scholar

[11] Mostovshchikov A.V., Il'in A.P., Chumerin P.Yu., Yushkov Yu.G., Vaulin V.A., Alekseev B.A., The Influence of Microwave Radiation on the Thermal Stability of Aluminum Nanopowder, Tech. Phys. Lett. 42 (2016) 344–346.

DOI: 10.1134/s1063785016040118

Google Scholar

[12] Mostovshchikov A.V., Ilyin A.P., Azanov A.A., Egorov I.S., The Energy Stored in the Aluminum Nanopowder Irradiated by Electron Beam, Key Eng. Mat. 685 (2016) 639–642.

DOI: 10.4028/www.scientific.net/kem.685.639

Google Scholar

[13] Mostovshchikov A.V., Ilyin A.P., Barabash N.S., Influence of Ultra-violet Radiation on Sublimation Energy of Silver Chloride (AgCl), Key Eng. Mat. 685 (2016) 735–738.

DOI: 10.4028/www.scientific.net/kem.685.735

Google Scholar

[14] Golushkova E.B., Ilyin A.P., Mostovshchikov A.V., Extraction of Oil Heteroatomic Compounds Using Metal Powders, Key Eng. Mat. 685 (2016) 743-747.

DOI: 10.4028/www.scientific.net/kem.685.743

Google Scholar

[15] Il'in A.P., Root L.O., and Mostovshchikov A.V., The Rise of Energy Accumulated in Metal Nanopowders, Techn. Phys. 57 (2012) 1178-1180.

DOI: 10.1134/s1063784212080129

Google Scholar

[16] Il'in A.P., Mostovshchikov A.V., and Root L.O., Growth of Aluminum Nitride Single Crystals under Thermal Explosion Conditions, Tech. Phys. Lett. 37 (2011) 965–966.

DOI: 10.1134/s1063785011100208

Google Scholar

[17] Ilyin A.P., Root L.O., Mostovshchikov A.V., The Influence of Aluminium Nanopowder Density on the Structure and Properties of its Combustion Products in Air, Key Eng. Mat. 685 (2016) 521-524.

DOI: 10.4028/www.scientific.net/kem.685.521

Google Scholar

[18] Korshunov, A.V., Il'In, A.P., Radishevskaya, N.I., Morozova, T.P. The kinetics of oxidation of aluminum electroexplosive nanopowders during heating in air, Russian Journal of Physical Chemistry A. 84-9 (2010) 1576–1584.

DOI: 10.1134/s0036024410090244

Google Scholar

[19] Korshunov, A., Heyrovský, M. Dispersion of silver particles in aqueous solutions visualized by polarography/voltammetry, Electrochimica Acta. 54-26 (2009) 6264–6268.

DOI: 10.1016/j.electacta.2009.05.084

Google Scholar

[20] Korshunov, A.V., Yosypchuk, B., Heyrovský, M. Voltammetry of aqueous chloroauric acid with hanging mercury drop electrode, Coll. Czech. Chem. Commun. 76-7 (2011) 929–936.

DOI: 10.1135/cccc2011064

Google Scholar

[21] Korshunov A.V., Influence of dispersion aluminum powders on the regularities of their interaction with nitrogen, Russ. J. Phys. Chem. A. Vol. 85, 7 (2011) 1202-1210.

DOI: 10.1134/s0036024411070156

Google Scholar

[22] Gorchakov, E., Ustinova, E., Kolpakova, N. Anodic stripping determination of Pt(IV) based on the anodic oxidation of Hg and Cd from electrochemically deposited Hg-Pt and Hg-Cd alloy phases, Journal of Solid State Electrochemistry, 16-7 (2012).

DOI: 10.1007/s10008-012-1709-4

Google Scholar

[23] Perevezentseva D.O., Gorchakov E.V., Oskina Yu.A. Electrolytic behavior silver microphases and nanophases on the graphite electrode surface, Key Eng. Mat. 712 (2016) 117–122.

DOI: 10.4028/www.scientific.net/kem.712.117

Google Scholar

[24] Perevezentseva D.O., Skirdin K.V., Gorchakov E.V., Bimatov V.I. Electrochemical activity of methionine at graphite electrode modified with gold nanoparticles, Key Eng. Mat. 685 (2016) 563–568.

DOI: 10.4028/www.scientific.net/kem.685.563

Google Scholar

[25] Bozhko P.V., Korshunov A.V., Il'in A.P., Lotkov A.I., Ratochka I.V., Reactivity of submicrocrystalline titanium: II. Electrochemical properties and corrosion stability in sulfuric acid solutions, Inorganic Materials: Applied Research, 4 (2013).

DOI: 10.1134/s2075113313020032

Google Scholar

[26] Mostovshchikov A.V., Ilyin A.P., Zakharova M.A., Structural and Energy State of Electro-Explosive Aluminum Nanopowder, Key Eng. Mat. 712 (2016) 215–219.

DOI: 10.4028/www.scientific.net/kem.712.215

Google Scholar

[27] Il'in A.P., Mostovshchikov A.V., Pak A.Ya., Effect of Uniform Magnetic and Electric Fields on Microstructure and Substructure Characteristics of Combustion Products of Aluminum Nanopowder in Air, Techn. Phys. 61 (2016) 1862–1865.

DOI: 10.1134/s1063784216120173

Google Scholar

[28] Genzel Ch., A Study of X-Ray Residual Stress Gradient Analysis in Thin Layers with Strong Fibre Texture, Phys. stat. sol. (a). 165 (1998) 347–360.

DOI: 10.1002/(sici)1521-396x(199802)165:2<347::aid-pssa347>3.0.co;2-k

Google Scholar

[29] Mostovshchikov A.V., Ilyin A.P., Zakharova M.A., Energy storage in aluminum nanopowder in stress-strain state of crystal lattice, Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 327(2) (2016) 77-82.

Google Scholar

[30] Il'in A.P., Mostovshchikov A.V., and Timchenko N.A., Phase Formation Sequence in Combustion of Pressed Aluminum Nanopowder in Air Studied by Synchrotron Radiation, Combust. Explo. Shock. 49 (2013) 320–324.

DOI: 10.1134/s0010508213030088

Google Scholar

[31] Mostovshchikov A., Ilyin A., Zabrodina I., Morphology of Aluminum Nanopowder Combustion Products in a Magnetic Field in Air, Key Eng. Mat. 685 (2016) 516–520.

DOI: 10.4028/www.scientific.net/kem.685.516

Google Scholar