[1]
G. Jard, T. Liboz, F. Mathieu, A. Guyonvarc'h and A. Lebrihi, Review of mycotoxin reduction in food and feed: from prevention in the field to detoxification by adsorption or transformation, J. Food Additives and Contaminants 28 (2011) 1590–1609.
DOI: 10.1080/19440049.2011.595377
Google Scholar
[2]
O. Röder, M. Jahn, T. Schröder, M. Stahl, M. Kotte and S. Beuermann, E-ventus Technology – an Innovative Treatment Method for Sustainable Reduction in the Use of Pesticides with Recommendation for Organic Seed, J. Verbr. Lebensm. 4 (2009) 107-117.
DOI: 10.1007/s00003-009-0476-3
Google Scholar
[3]
O.K. Kikuchi, S. Todoriki, M. Saito, and T. Hayashi, Efficacy of Soft-electron (Low-energy Electron Beam) for Soybean Decontamination in Comparison with Gamma-rays, J. Food Sci. 68 (2003) 649-652.
DOI: 10.1111/j.1365-2621.2003.tb05725.x
Google Scholar
[4]
Jianwei He, Ting Zhoua, J. Christopher Young, Greg J. Boland and Peter M. Scott, Chemical and biological transformations for detoxification of trichothecene mycotoxins in human and animal food chains: a review, Trends Food Sci. Technol. 21 (2010).
DOI: 10.1016/j.tifs.2009.08.002
Google Scholar
[5]
P. Karlovsky, Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives, Appl. Microbiol. Biotechnol. 91 (2011) 491–504.
DOI: 10.1007/s00253-011-3401-5
Google Scholar
[6]
F. Berthiller, C. Crews, C. Dall'Asta, S. De Saeger, G. Haesaert, P. Karlovsky, I. P. Oswald, W. Seefelder, G.Speijers and J. Stroka, Masked mycotoxins: A review, Mol. Nutr. Food Res. 57 (2013) 165-186.
DOI: 10.1002/mnfr.201100764
Google Scholar
[7]
T. Hayashi, S. Todoriki, Treatment of Foods with Soft-electrons (Low-energy Electrons), EAERI-Conf. 013 (2002) 100-107.
Google Scholar
[8]
S. Aquino, Gamma radiation against toxigenic fungi in food, medicinal and aromatic herbs, In: Mendelez-Vilas, A. (Ed.), Science against microbial pathogen: Communicating current research and technological advances. Formatex, Badajoz, 2011, pp.272-281.
Google Scholar
[9]
M. R. Nemtanu, M. Brasoveanu, G. Karaca and I. Erper, Inactivation effect of electron beam irradiation on fungal load of naturally contaminated maize seeds, J. Sci. Food Agric. 94 (2014) 2668–2673.
DOI: 10.1002/jsfa.6607
Google Scholar
[10]
A.G. Taylor and G.E. Harman, Concept and technologies of selected seed treatments, J. Annu. Rev. Phytopathol. 28 (1990) 321-339.
DOI: 10.1146/annurev.py.28.090190.001541
Google Scholar
[11]
Seok-Moon Jeong, So-Young Kim, Dong-Ryul Kim, Seong-Chun Jo, K. C. Nam, D. U. Ahn, and Seung-Cheol Lee, Effect of Heat Treatment on the Antioxidant Activity of Extracts from Citrus Peels, J. Agric. Food Chem. 52 (2004) 3389-3393.
DOI: 10.1021/jf049899k
Google Scholar
[12]
A.C. Hernandez, P.A. Dominguez, O.A. Cruz, R. Ivanov, C.A. Carballo, and B.R. Zepeda, Laser in agriculture, Int. Agrophys. 24 (2010) 407-422.
Google Scholar
[13]
K. Krishnamurthy, H.K. Khurana, J. Soojin, J. Irudayaraj, A. Demirci. Infrared heating in food processing: an overview, Compr Rev Food Sci Food Saf. 7 (2008) 2-13.
DOI: 10.1111/j.1541-4337.2007.00024.x
Google Scholar
[14]
H. Delincée. Detection of food treated with ionizing radiation, Trends Food Sci. Technol. 9 (1998) 73-82.
DOI: 10.1016/s0924-2244(98)00002-8
Google Scholar
[15]
Information on http://www.fep.fraunhofer.de.
Google Scholar
[16]
EPPO Standard PM 10/9 (1) Low energy electron treatment of cereal seed against fungi, OEPP/EPPO Bull., 39 (2009) 36.
DOI: 10.1111/j.1365-2338.2009.02230.x
Google Scholar
[17]
A.A. Kader. Potential applications of ionizing radiation in postharvest handling of fresh fruits and vegetables, Food Technol. 40 (1986) 117-121.
Google Scholar
[18]
A.D. Belov, V.A. Kirshin, N.P. Lysenko, Radiobiology, Kolos publishing, Moscow, 1999. (In Russian).
Google Scholar
[19]
Gui-Ran Kim, K. Akram, Jae-Jun Ahn, Joong-Ho Kwon, Identification of gamma ray and electron-beam irradiated wheat after different processing treatments, J. Cereal Sci. 56 (2012) 347-351.
DOI: 10.1016/j.jcs.2012.02.013
Google Scholar
[20]
I. Egorov, V. Esipov, G. Remnev, M. Kaikanov, E. Lukonin, A. Poloskov. A high-repetition rate pulsed electron accelerator. IEEE Trans. Dielectr. Electr. Insul. 20 (2013) 1334-1339.
DOI: 10.1109/tdei.2013.6571453
Google Scholar
[21]
Egorov, I.S., Kaikanov, M.I., Lukonin, E.I., Remnev, G.E., Stepanov, A.V. The Astra repetitive-pulse electron accelerator, Instrum. Exp. Tech. 56 (2013) 568-570.
DOI: 10.1134/s0020441213050035
Google Scholar
[22]
I. Egorov, M. Serebrennikov, Y. Isakova, A. Poloskov. Sectioned calorimeter for quick diagnostic of the electron beam energy distribution, Nuclear Inst. and Methods in Physics Research, A 875 (2017) 132–136.
DOI: 10.1016/j.nima.2017.09.002
Google Scholar
[23]
State Guidelines 4.2.3016-12 State Methodological guidelines 4.2.3016-12. Sanitary and parasitological studies of fruit and vegetable, fruit and berry and plant products, Moscow: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor, 2012, 31 p. (In Russian).
Google Scholar
[24]
State Guidelines. Rules for bacteriological research of feed, Kolos publishing, Moscow: Ministry of Agriculture, 1975. (In Russian).
Google Scholar
[25]
State Standard 12038-84 Seeds of agricultural crops. Methods for determining germination, Standartinform, Moscow, 2011, 36-64. (In Russian).
Google Scholar