Influence of a Pulsed Electron Beam on the Sowing Quality of Wheat

Article Preview

Abstract:

Wheat grain has been irradiated by 200 keV and 305 keV of pulsed electron beams for changing of sowing parameters. Total microbial number, germination and germination energy were compared for both of electron kinetic energy settings for the same ranges of the energy input. The electron beam of 305 keV showed better disinfecting effect for energy input values of less than 4 J/g. That mode eliminates seed germination ability after irradiation of more than 2 J/g and can be used for grain storing. The mode of 200 keV beam keeps seed germination ability up to 5 J/g with the similar disinfecting effect after the irradiation energy input of more than 4 J/g. This mode can be used for pre-sowing seed treatment procedure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

172-180

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Jard, T. Liboz, F. Mathieu, A. Guyonvarc'h and A. Lebrihi, Review of mycotoxin reduction in food and feed: from prevention in the field to detoxification by adsorption or transformation, J. Food Additives and Contaminants 28 (2011) 1590–1609.

DOI: 10.1080/19440049.2011.595377

Google Scholar

[2] O. Röder, M. Jahn, T. Schröder, M. Stahl, M. Kotte and S. Beuermann, E-ventus Technology – an Innovative Treatment Method for Sustainable Reduction in the Use of Pesticides with Recommendation for Organic Seed, J. Verbr. Lebensm. 4 (2009) 107-117.

DOI: 10.1007/s00003-009-0476-3

Google Scholar

[3] O.K. Kikuchi, S. Todoriki, M. Saito, and T. Hayashi, Efficacy of Soft-electron (Low-energy Electron Beam) for Soybean Decontamination in Comparison with Gamma-rays, J. Food Sci. 68 (2003) 649-652.

DOI: 10.1111/j.1365-2621.2003.tb05725.x

Google Scholar

[4] Jianwei He, Ting Zhoua, J. Christopher Young, Greg J. Boland and Peter M. Scott, Chemical and biological transformations for detoxification of trichothecene mycotoxins in human and animal food chains: a review, Trends Food Sci. Technol. 21 (2010).

DOI: 10.1016/j.tifs.2009.08.002

Google Scholar

[5] P. Karlovsky, Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives, Appl. Microbiol. Biotechnol. 91 (2011) 491–504.

DOI: 10.1007/s00253-011-3401-5

Google Scholar

[6] F. Berthiller, C. Crews, C. Dall'Asta, S. De Saeger, G. Haesaert, P. Karlovsky, I. P. Oswald, W. Seefelder, G.Speijers and J. Stroka, Masked mycotoxins: A review, Mol. Nutr. Food Res. 57 (2013) 165-186.

DOI: 10.1002/mnfr.201100764

Google Scholar

[7] T. Hayashi, S. Todoriki, Treatment of Foods with Soft-electrons (Low-energy Electrons), EAERI-Conf. 013 (2002) 100-107.

Google Scholar

[8] S. Aquino, Gamma radiation against toxigenic fungi in food, medicinal and aromatic herbs, In: Mendelez-Vilas, A. (Ed.), Science against microbial pathogen: Communicating current research and technological advances. Formatex, Badajoz, 2011, pp.272-281.

Google Scholar

[9] M. R. Nemtanu, M. Brasoveanu, G. Karaca and I. Erper, Inactivation effect of electron beam irradiation on fungal load of naturally contaminated maize seeds, J. Sci. Food Agric. 94 (2014) 2668–2673.

DOI: 10.1002/jsfa.6607

Google Scholar

[10] A.G. Taylor and G.E. Harman, Concept and technologies of selected seed treatments, J. Annu. Rev. Phytopathol. 28 (1990) 321-339.

DOI: 10.1146/annurev.py.28.090190.001541

Google Scholar

[11] Seok-Moon Jeong, So-Young Kim, Dong-Ryul Kim, Seong-Chun Jo, K. C. Nam, D. U. Ahn, and Seung-Cheol Lee, Effect of Heat Treatment on the Antioxidant Activity of Extracts from Citrus Peels, J. Agric. Food Chem. 52 (2004) 3389-3393.

DOI: 10.1021/jf049899k

Google Scholar

[12] A.C. Hernandez, P.A. Dominguez, O.A. Cruz, R. Ivanov, C.A. Carballo, and B.R. Zepeda, Laser in agriculture, Int. Agrophys. 24 (2010) 407-422.

Google Scholar

[13] K. Krishnamurthy, H.K. Khurana, J. Soojin, J. Irudayaraj, A. Demirci. Infrared heating in food processing: an overview, Compr Rev Food Sci Food Saf. 7 (2008) 2-13.

DOI: 10.1111/j.1541-4337.2007.00024.x

Google Scholar

[14] H. Delincée. Detection of food treated with ionizing radiation, Trends Food Sci. Technol. 9 (1998) 73-82.

DOI: 10.1016/s0924-2244(98)00002-8

Google Scholar

[15] Information on http://www.fep.fraunhofer.de.

Google Scholar

[16] EPPO Standard PM 10/9 (1) Low energy electron treatment of cereal seed against fungi, OEPP/EPPO Bull., 39 (2009) 36.

DOI: 10.1111/j.1365-2338.2009.02230.x

Google Scholar

[17] A.A. Kader. Potential applications of ionizing radiation in postharvest handling of fresh fruits and vegetables, Food Technol. 40 (1986) 117-121.

Google Scholar

[18] A.D. Belov, V.A. Kirshin, N.P. Lysenko, Radiobiology, Kolos publishing, Moscow, 1999. (In Russian).

Google Scholar

[19] Gui-Ran Kim, K. Akram, Jae-Jun Ahn, Joong-Ho Kwon, Identification of gamma ray and electron-beam irradiated wheat after different processing treatments, J. Cereal Sci. 56 (2012) 347-351.

DOI: 10.1016/j.jcs.2012.02.013

Google Scholar

[20] I. Egorov, V. Esipov, G. Remnev, M. Kaikanov, E. Lukonin, A. Poloskov. A high-repetition rate pulsed electron accelerator. IEEE Trans. Dielectr. Electr. Insul. 20 (2013) 1334-1339.

DOI: 10.1109/tdei.2013.6571453

Google Scholar

[21] Egorov, I.S., Kaikanov, M.I., Lukonin, E.I., Remnev, G.E., Stepanov, A.V. The Astra repetitive-pulse electron accelerator, Instrum. Exp. Tech. 56 (2013) 568-570.

DOI: 10.1134/s0020441213050035

Google Scholar

[22] I. Egorov, M. Serebrennikov, Y. Isakova, A. Poloskov. Sectioned calorimeter for quick diagnostic of the electron beam energy distribution, Nuclear Inst. and Methods in Physics Research, A 875 (2017) 132–136.

DOI: 10.1016/j.nima.2017.09.002

Google Scholar

[23] State Guidelines 4.2.3016-12 State Methodological guidelines 4.2.3016-12. Sanitary and parasitological studies of fruit and vegetable, fruit and berry and plant products, Moscow: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor, 2012, 31 p. (In Russian).

Google Scholar

[24] State Guidelines. Rules for bacteriological research of feed, Kolos publishing, Moscow: Ministry of Agriculture, 1975. (In Russian).

Google Scholar

[25] State Standard 12038-84 Seeds of agricultural crops. Methods for determining germination, Standartinform, Moscow, 2011, 36-64. (In Russian).

Google Scholar