Efficiency of Thermal Plasma Treatment of Aluminosilicate Particles

Article Preview

Abstract:

The paper studies the efficiency of plasma-assisted synthesis of bottom ash-based microspheres in the light of the liquid phase formation. The studies also include the assessment of morphology of obtained microspheres. It is shown that microspheres with high sphericity can be obtained with thermal plasma treatment. During thermal plasma treatment, the amount of silicon and aluminum relatively grows due to the decrease in the amount of calcium, titanium, magnesium, potassium, and natrium. The high content of silica and alumina in obtained microspheres indicates to their high thermal, chemical, and mechanical resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-28

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.S. Levitskii, E.I. Terukov, A.I. Maksimov, V.A. Moshnikov, Investigation of the structure and composition of film sol-gel-derived COOx-SiO2 systems. Phys. Solid State. 56,2(2014)270-275.

DOI: 10.1134/s1063783414020176

Google Scholar

[2] M. Kawashita, N. Matsui, Zh. Li, T. Miyaza, Preparation of porous yttrium Oxide microparticles by gelation of ammonium alginate in aqueous solution containing yttrium. Ions. J Mater Sci: Mater Med. 21 (2010) 1837-1843.

DOI: 10.1007/s10856-010-4050-4

Google Scholar

[3] A.S. Zhukov, V.A. Arkhipov, S.S. Bondarchuk, V.D. Gol'din, Evaluation of particle morphology in plasma-chemical synthesis of ceramic powders [in Russian]. Khimicheskaya fizika. 32, 12 (2013) 1-6.

Google Scholar

[4] V.A. Arkhipov, E.A. Kozlov, I.K. Zharova, S.S. Titov, A.S. Usanina, Evolution of a liquid-drop aerosol cloud in the atmosphere. Arabian Journal of Geosciences. 9 (2016) 1-10.

DOI: 10.1007/s12517-015-2161-4

Google Scholar

[5] K.P. Sreekumar, S.K. Saxena, T.K. Thiyagarajan, A. Dash, P.V. Ananthapadmanabhan, M. Venkatesh, Studies on the preparation and plasma spherodization of yttrium aluminosilicate glass microspheres for their potential application in liver brachytherapy. J. Phys.: Conf. Ser. 208, (2010).

DOI: 10.1088/1742-6596/208/1/012117

Google Scholar

[6] V.S. Bessmertnyj, V.P. Krokhin, A.A. Lyashko, N.A. Drizhd, Zh.E. Shekhovtsova, Preparation of glass microspheres by plasma spraying. Steklo i Keramika. 8 (2001) 6-7.

Google Scholar

[7] I. Gulyaev, Experience in plasma production of hollow ceramic microspheres with required wall thickness. Ceramics International. 41 (2015) 101-107.

DOI: 10.1016/j.ceramint.2014.08.040

Google Scholar

[8] V. Shekhovtsov et al., Aluminosilicate Microsphere Synthesis in Plasma Flow. Materials Science Forum. 906 (2017) 131-136.

DOI: 10.4028/www.scientific.net/msf.906.131

Google Scholar

[9] N. I. Vatin, D. V. Petrosov, A. I. Kalachev, P. Lakhtinen, Ash and bottom ash in construction [in Russian]. Inzhenerno-stroitel'nyi zhurnal. 4 (2011) 16-21.

Google Scholar

[10] G. Itskos, S. Itskos, N. Koukouzas, Size fraction characterization of highly-calcareous fly ash. Fuel Process Technol. 91 (2010) 1558-1563.

DOI: 10.1016/j.fuproc.2010.06.002

Google Scholar

[11] A.M. Mustafa, A.l. Bakri, et al., Microstructure Studies on the Effect of the Alkaline Activators of Fly Ash-Based Geopolymer at Elevated Heat Treatment Temperature. Applied Mechanics and Materials. 421 (2013) 342-348.

DOI: 10.4028/www.scientific.net/amm.421.342

Google Scholar

[12] D.V. Oreshkin, K.V. Belyev, V.S. Semenov, U.E. Kretova, Hollow microspheres: an efficient filler for construction and backfill mortars. Industrial and civil engineering. 9 (2010) 50-51.

Google Scholar

[13] V.V. Shekhovtsov, O.G. Volokitin, Plasma-assisted production of ash-based microspheres with different structure [in Russian]. Tekhnika i tekhnologiya silikatov. 24 (2017) 2-6.

Google Scholar

[14] V.V. Shekhovtsov, O.G. Volokitin, A.A. Kondratyuk, R. E. Vitske, Fly ash particles spheroidization using low temperature plasma energy. IOP Conf. Series: Materials Science and Engineering. 156 (2016) 012043.

DOI: 10.1088/1757-899x/156/1/012043

Google Scholar

[15] V.V. Shekhovtsov, G.G. Volokitin, N.K. Skripnikova, O.G. Volokitin, R.E. Gafarov, Plasma treatment of agglomerating aluminosilicate powders based on coal ash. AIP Conference Proceedings. 1800 (2017) 020008.

DOI: 10.1063/1.4973024

Google Scholar

[16] V.A. Vlasov, O.G. Volokitin, G.G. Volokitin, N.K. Skripnikova, V.V. Shekhovtsov, Calculation of the melting process of a quartz particle under low-temperature plasma conditions. Journal of Engineering Physics and Thermophysics. 89 (2016) 152-156.

DOI: 10.1007/s10891-016-1362-3

Google Scholar

[17] V.V. Shekhovtsov, V.A. Vlasov, G.G. Volokitin, O.G. Volokitin. Izv. Vyssh. Uchebn. Zaved., Fiz. 59 (2016) 305-305.

Google Scholar

[18] O.G. Volokitin, V.I. Vereshchagin, G.G. Volokitin, N.K. Skripnikova, V.V. Shekhovtsov, Analysis of traditional and plasma-assisted melting of bottom ash generated by power plants [in Russian]. Tekhnika i tekhnologiya silikatov. 23 (2016) 2-5.

DOI: 10.1063/1.4937849

Google Scholar

[19] V.V. Shekhovtsov, O.G. Volokitin, G.G. Volokitin, N.K. Skripnikova, A.S. An'shakov, V.I. Kuz'min, Thermal plasma effect on ceramic microsphere formation. Part 1. Heating and evaporation [In Russian]. Vestnik TSUAB. 64 (2017) 143-150.

DOI: 10.4028/www.scientific.net/msf.906.131

Google Scholar