Comparison of Mechanical Properties and Microstructure of Annealed and Quenched Ti-Nb Alloys

Article Preview

Abstract:

The effect of Nb content on microstructure, mechanical properties and phase formation in annealed and quenched binary Ti-Nb alloys were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analysis. The content of Nb varied in the range 0-37 mass % leading to significant changes in the microstructure. The annealed and furnace-cooled binary Ti-Nb samples exhibited HCP martensitic α` phase at a Nb content below 14 mass % and stable BCC β phase at higher contents of Nb. The structure of the quenched samples changed with increase of Nb content in the following order: coarse primary martensite → fine acicular (α`+α``) martensite → single β phase structure. The mechanical properties of alloys strongly depended on the Nb content and type of the dominating phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-34

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Kurtz, K. Ong, E. Lau, F. Mowat, M. Halpern, Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030, The Journal of bone and joint surgery. American volume 89 (2007) 780–785.

DOI: 10.2106/00004623-200704000-00012

Google Scholar

[2] M. Niinomi, Recent metallic materials for biomedical applications, Metall and Mat Trans A 33 (2002) 477–486.

DOI: 10.1007/s11661-002-0109-2

Google Scholar

[3] M. Niinomi, Metallic biomaterials, J Artif Organs 11 (2008) 105–110.

Google Scholar

[4] M.B. Nasab, M.R. Hassan, B.B. Sahari, Metallic Biomaterials of Knee and Hip - A Review, Trends in Biomaterials and Artificial Organs 24 (2010) 69–82.

Google Scholar

[5] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants – A review, Progress in Materials Science 54 (2009) 397–425.

DOI: 10.1016/j.pmatsci.2008.06.004

Google Scholar

[6] C.N. Elias, J.H.C. Lima, R. Valiev, M.A. Meyers, Biomedical applications of titanium and its alloys, JOM 60 (2008) 46–49.

DOI: 10.1007/s11837-008-0031-1

Google Scholar

[7] M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications, Acta biomaterialia 8 (2012) 3888–3903.

DOI: 10.1016/j.actbio.2012.06.037

Google Scholar

[8] M. Niinomi, Mechanical properties of biomedical titanium alloys, Materials Science and Engineering: A 243 (1998) 231–236.

DOI: 10.1016/s0921-5093(97)00806-x

Google Scholar

[9] D.P. Perl, Relationship of aluminum to Alzheimer's disease, Environ Health Perspect 63 (1985) 149–153.

Google Scholar

[10] A. Cremasco, A.D. Messias, A.R. Esposito, Duek, Eliana Aparecida de Rezende, R. Caram, Effects of alloying elements on the cytotoxic response of titanium alloys, Materials Science and Engineering: C 31 (2011) 833–839.

DOI: 10.1016/j.msec.2010.12.013

Google Scholar

[11] M. Niinomi, Recent research and development in titanium alloys for biomedical applications and healthcare goods, Sci. Technol. Adv. Mater. 4 (2003) 445–454.

Google Scholar

[12] S.G. Fedotov, P.K. Belousov, Elastic constants of alloys of the system titanium– niobium, Fiz. Met. Metalloved 1964 (17) 732–736.

Google Scholar

[13] S. Banumathy, R.K. Mandal, A.K. Singh, Structure of orthorhombic martensitic phase in binary Ti–Nb alloys, J. Appl. Phys. 106 (2009) 93518.

DOI: 10.1063/1.3255966

Google Scholar

[14] R. Davis, H.M. Flower, D.R.F. West, Martensitic transformations in Ti-Mo alloys, Journal of Material Science 14 (1979) 712–722.

DOI: 10.1007/bf00772735

Google Scholar

[15] J.L. Murray, The Nb−Ti (Niobium-Titanium) system, Bulletin of Alloy Phase Diagrams 2 (1981) 55–61.

DOI: 10.1007/bf02873704

Google Scholar

[16] Y.-H. Hon, J.-Y. Wang, Y.-N. Pan, Composition/Phase Structure and Properties of Titanium-Niobium Alloys, MATERIALS TRANSACTIONS 44 (2003) 2384–2390.

DOI: 10.2320/matertrans.44.2384

Google Scholar

[17] D.L. Moffat, U.R. Kattner, The stable and metastable Ti-Nb phase diagrams, MTA 19 (1988) 2389–2397.

DOI: 10.1007/bf02645466

Google Scholar

[18] P.J. Bania, Beta titanium alloys and their role in the titanium industry, JOM 46 (1994) 16–19.

DOI: 10.1007/bf03220742

Google Scholar

[19] Y. Mantani, M. Tajima, Phase transformation of quenched α" martensite by aging in Ti–Nb alloys, Materials Science and Engineering: A 438-440 (2006) 315–319.

DOI: 10.1016/j.msea.2006.02.180

Google Scholar