The Role of Post Service Heat Treatment on the Contributions of Creep Deformation and Fracture to Service Life of AISI Type 316H Steel Components

Abstract:

Article Preview

Creep cavitation is a life limiting factor in stainless steel high temperature plant. However, regenerative heat treatments offer the potential of sintering creep cavities and thus extending a component’s time to failure. This is countered by thermal aging effects which can lead to precipitate formation and an increased creep rate. This study investigates these behaviours in a AISI Type 316H austenitic stainless steel.

Info:

Periodical:

Edited by:

Luis Rodríguez-Tembleque, Jaime Domínguez and Ferri M.H. Aliabadi

Pages:

247-252

Citation:

A.D. Warren et al., "The Role of Post Service Heat Treatment on the Contributions of Creep Deformation and Fracture to Service Life of AISI Type 316H Steel Components", Key Engineering Materials, Vol. 774, pp. 247-252, 2018

Online since:

August 2018

Export:

Price:

$38.00

[1] R. A. Stevens and P. E. J. Flewitt: Metallurgical Transactions A Vol. 14A (1983), p.679.

[2] R. A. Stevens and P. E. J. Flewitt: Acta Metallurgica Vol. 27 (1979), p.67.

[3] R. A. Stevens and P. E. J. Flewitt: Materials Science and Engineering Vol.50 (1981), p.271.

[4] M. V. Speight and J. E. Harris: Materials Science Journal Vol. 1 (1967), p.83.

[5] J. Weertman: Scripta Metallurgica Vol. 7 (1973), p.1129.

[6] M. V. Speight and W. B. Beeré: Metal Science Journal Vol. 9 (1975), p.190.

[7] B. Chen; 2011, Effects of thermo–mechanical history on creep damage in 316H austenitic steel, PhD thesis, University of Bristol.

[8] F. R. N. Nabarro and H. L. de Villiers; in The Physics of Creep 1st Ed., Taylor & Francis Ltd: London, UK (1995).

[9] R.W. Evans and B. Wiltshire; in Creep of Metals and Alloys 1st Ed., Dotesios Printers Ltd.: Bradford–on–Avon, UK (1985).

[10] J.H. Hong, S. W. Nam and S. P. Choi: Journal of Materials Science Vol. 21 (1986), p.3966.

[11] H.J. Grabke: ISIJ International Vol. 29 (1989), p.529.

[12] B. Weiss and R. Stickler: Metallurgical Transactions Vol. 3 (1972), p.851.

[13] A.F. Padilha and P. R. Rios: ISIJ International Vol. 42 (2002), p.325.

[14] B.A. Senior: Journal of Materials Science Vol. 25 (1990), p.45.

[15] C.J. McMahon Jr.: Scripta Metallurgica Vol. 19 (1985), p.733.

[16] A. D. Warren, I. J. Griffiths and P. E. J. Flewitt: Journal of Materials Science Vol. 53 (2018), p.6183.

[17] A. D. Warren, I. J. Griffiths, R. L. Harniman, P. E. J. Flewitt and T. B. Scott: Materials Science and Engineering A Vol. 635 (2015), p.59.

[18] B. Chen, P. E. J. Flewitt, D. J. Smith and C. P. Jones: Ultramicroscopy Vol. 11 (2011), p.309.

[19] L. P. Stoter: J. Materials Science Vol. 16 (1981), p.1039.

[20] H. Jazaeri, P. J. Bouchard, M. T. Hutchings, A.A. Mamun and R. K. Heenan: Materials science and Technology Vol 31 (2015), P.535.

[21] P. J. Bouchard, P. J. Withers, S. A. McDonald and R. K. Heenan: Acta Materialia Vol. 52 (2004), p.23.

Fetching data from Crossref.
This may take some time to load.