The Role of Post Service Heat Treatment on the Contributions of Creep Deformation and Fracture to Service Life of AISI Type 316H Steel Components

Article Preview

Abstract:

Creep cavitation is a life limiting factor in stainless steel high temperature plant. However, regenerative heat treatments offer the potential of sintering creep cavities and thus extending a component’s time to failure. This is countered by thermal aging effects which can lead to precipitate formation and an increased creep rate. This study investigates these behaviours in a AISI Type 316H austenitic stainless steel.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

247-252

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. A. Stevens and P. E. J. Flewitt: Metallurgical Transactions A Vol. 14A (1983), p.679.

Google Scholar

[2] R. A. Stevens and P. E. J. Flewitt: Acta Metallurgica Vol. 27 (1979), p.67.

Google Scholar

[3] R. A. Stevens and P. E. J. Flewitt: Materials Science and Engineering Vol.50 (1981), p.271.

Google Scholar

[4] M. V. Speight and J. E. Harris: Materials Science Journal Vol. 1 (1967), p.83.

Google Scholar

[5] J. Weertman: Scripta Metallurgica Vol. 7 (1973), p.1129.

Google Scholar

[6] M. V. Speight and W. B. Beeré: Metal Science Journal Vol. 9 (1975), p.190.

Google Scholar

[7] B. Chen; 2011, Effects of thermo–mechanical history on creep damage in 316H austenitic steel, PhD thesis, University of Bristol.

Google Scholar

[8] F. R. N. Nabarro and H. L. de Villiers; in The Physics of Creep 1st Ed., Taylor & Francis Ltd: London, UK (1995).

Google Scholar

[9] R.W. Evans and B. Wiltshire; in Creep of Metals and Alloys 1st Ed., Dotesios Printers Ltd.: Bradford–on–Avon, UK (1985).

Google Scholar

[10] J.H. Hong, S. W. Nam and S. P. Choi: Journal of Materials Science Vol. 21 (1986), p.3966.

Google Scholar

[11] H.J. Grabke: ISIJ International Vol. 29 (1989), p.529.

Google Scholar

[12] B. Weiss and R. Stickler: Metallurgical Transactions Vol. 3 (1972), p.851.

Google Scholar

[13] A.F. Padilha and P. R. Rios: ISIJ International Vol. 42 (2002), p.325.

Google Scholar

[14] B.A. Senior: Journal of Materials Science Vol. 25 (1990), p.45.

Google Scholar

[15] C.J. McMahon Jr.: Scripta Metallurgica Vol. 19 (1985), p.733.

Google Scholar

[16] A. D. Warren, I. J. Griffiths and P. E. J. Flewitt: Journal of Materials Science Vol. 53 (2018), p.6183.

Google Scholar

[17] A. D. Warren, I. J. Griffiths, R. L. Harniman, P. E. J. Flewitt and T. B. Scott: Materials Science and Engineering A Vol. 635 (2015), p.59.

Google Scholar

[18] B. Chen, P. E. J. Flewitt, D. J. Smith and C. P. Jones: Ultramicroscopy Vol. 11 (2011), p.309.

Google Scholar

[19] L. P. Stoter: J. Materials Science Vol. 16 (1981), p.1039.

Google Scholar

[20] H. Jazaeri, P. J. Bouchard, M. T. Hutchings, A.A. Mamun and R. K. Heenan: Materials science and Technology Vol 31 (2015), P.535.

Google Scholar

[21] P. J. Bouchard, P. J. Withers, S. A. McDonald and R. K. Heenan: Acta Materialia Vol. 52 (2004), p.23.

Google Scholar