[1]
Torres, Y., Tarrago, J. M., Coureaux, D., et. al. Fracture and fatigue of rock bit cemented carbides: Mechanics and mechanisms of crack growth resistance under monotonic and cyclic loading[J]. International Journal of Refractory Metals & Hard Materials, 2014, 45(45), 179-188.
DOI: 10.1016/j.ijrmhm.2014.04.010
Google Scholar
[2]
Beste, U., & Jacobson, S. A new view of the deterioration and wear of WC/Co cemented carbide rock drill buttons[J]. Wear, 2008, 264(11), 1129-1141.
DOI: 10.1016/j.wear.2007.01.030
Google Scholar
[3]
Zhou Shuzhu, Yan Linli, Gao Linli, et al. Research Status of Ultra Coarse Grained WC-Co Cemented Carbide[J]. Cemented Carbide, 2014, 31(1).
Google Scholar
[4]
Golovchan, V. T. Some analytical consequences of experimental data on properties of WC-Co hardmetals[J]. International Journal of Refractory Metals and Hard Materials, 2008, 26(4): 301-305.
DOI: 10.1016/j.ijrmhm.2007.07.001
Google Scholar
[5]
Ren, X., Miao, H., Peng, Z. A review of cemented carbides for rock drilling: An old but still tough challenge in geo-engineering[J]. International Journal of Refractory Metals and Hard Materials, 2013, 39: 61-77.
DOI: 10.1016/j.ijrmhm.2013.01.003
Google Scholar
[6]
O'Quigley, D. G. F., Luyckx, S., et. al. New results on the relationship between hardness and fracture toughness of WC-Co hardmetal[J]. Materials Science and Engineering: A, 1996, 209(1): 228-230.
DOI: 10.1016/0921-5093(95)10112-8
Google Scholar
[7]
Konyashin, I., Ries, B., & Lachmann, F. Near-nano WC-Co hardmetals: Will they substitute conventional coarse-grained mining grades? [J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(4): 489-497.
DOI: 10.1016/j.ijrmhm.2010.02.001
Google Scholar
[8]
Borgh, I., Hedström, P., Borgenstam, A., et. al. Effect of carbon activity and powder particle size on wc grain coarsening during sintering of cemented carbides[J]. International Journal of Refractory Metals & Hard Materials, 2014, 42(1), 30-35.
DOI: 10.1016/j.ijrmhm.2013.10.004
Google Scholar
[9]
Marshall, J. M., Kusoffsky, A. Binder phase structure in fine and coarse WC-Co hard metals with Cr and V carbide additions[J]. International Journal of Refractory Metals and Hard Materials, 2013, 40: 27-35.
DOI: 10.1016/j.ijrmhm.2013.04.001
Google Scholar
[10]
Akerman, J. G., Fischer, U. K., Hartzell, E. T. Cemented carbide body used preferably for rock drilling and mineral cutting.US Patent No.4743515,(1988).
Google Scholar
[11]
Akerman, J. G., Fischer, U. K., Hartzell, E. T. Cemented carbide body with a binder phase gradient and method of making the same.US Patent No.4820482,(1989).
Google Scholar
[12]
Akerman, J., Fischer, U. K., Hartzell, E. T. Cemented carbide body with extra tough behavior. US Patent No.5453241, (1994).
Google Scholar
[13]
Liu, Y., Wang, H., Long, Z., et. al. Microstructural evolution and mechanical behaviors of graded cemented carbides[J]. Materials Science and Engineering: A, 2006;426(1): 346-354. 53-58.
DOI: 10.1016/j.msea.2006.04.018
Google Scholar
[14]
Liu, Y., Yang J.G., Cemented carbides of functionally graded and other new structures[M], Changsha, Central south university press, (2010).
Google Scholar