Polyaniline Enhanced Supercapacitance of Cobalt Hydroxide Nanowires/Carbon Nanotube Containing Polymer Sponge Layered Composite

Article Preview

Abstract:

Transition metal oxide nanostructures and conducting polymers like polyaniline have specific capacitance orders of magnitude higher than those of carbon based nanomaterials. In the present study nanoflowers of Cobalt Hydroxide, Polyaniline and Carbon Nanotubes were combined on a conventional Polymeric sponge to develop by using facile wet chemical techniques. High surface area of Cobalt Hydroxide nanoflowers when combined with Polyaniline showed enhanced capacitance values and stability. The carbon nanotubes enhanced the conductivity of the composite while the double porous structure of polyurethane sponge enhances the electrolyte flow, surface area, and reduces current density which leads to good reversibility and greater capacitance. Samples were characterized by cyclic voltammetry technique against Ag/AgCl reference electrode in three electrode setup.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] A. González, E. Goikolea, J. A. Barrena, R. Mysyk, Review on supercapacitors: technologies and materials, Renew. Sustain. Ener. Rev., 58 (2016) 1189–1206.

DOI: 10.1016/j.rser.2015.12.249

Google Scholar

[2] F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, Y. Wu, Electrode materials for aqueous asymmetric supercapacitors, RSC Adv., 3 (2013) 13059–13084.

DOI: 10.1039/c3ra23466e

Google Scholar

[3] J. Yan, E. Khoo, A. Sumboja, P. S. Lee, Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior., ACS Nano, 4 (2010) 4247–55.

DOI: 10.1021/nn100592d

Google Scholar

[4] F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors, Adv. Mater., 26 (2014) 2219–2251.

DOI: 10.1002/adma.201304137

Google Scholar

[5] V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Ener. Environ. Sci., 7 (2014) 1597–1614.

DOI: 10.1039/c3ee44164d

Google Scholar

[6] Y. Zhu, S. Murali, M. D. Stoller, A. Velamakanni, R. D. Piner, R. S. Ruoff, Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors, Carbon, 48 (2010) 2118–2122.

DOI: 10.1016/j.carbon.2010.02.001

Google Scholar

[7] A. Yuan, Q. Zhang, A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte, Carbon, 26 (2006) 321-329.

DOI: 10.1016/j.elecom.2006.05.018

Google Scholar

[8] P. Sen, A. De, A. D. Chowdhury, S. Bandyopadhyay, N. Agnihotri, M. Mukherjee, Conducting polymer based manganese dioxide nanocomposite as supercapacitor, Electrochim. Acta, 108 (2013) 265–273.

DOI: 10.1016/j.electacta.2013.07.013

Google Scholar

[9] J. Zhu et al., Interfacial polymerized polyaniline/graphite oxide nanocomposites toward electrochemical energy storage, Carbon, 12 (2012) 121-128.

Google Scholar

[10] W. Chen, R. B. Rakhi, H. N. Alshareef, Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte., Nanoscale, 5 (2013) 4134–8.

DOI: 10.1039/c3nr00773a

Google Scholar

[11] Q. Cheng, J. Tang, N. Shinya, L.-C. Qin, Co (OH) 2 nanosheet-decorated graphene-CNT composite for supercapacitors of high energy density, Sci. Techno. Advan. Mater., 15 (2014) 014206.

DOI: 10.1088/1468-6996/15/1/014206

Google Scholar

[12] A. Jagadale, V. Kumbhar, D. Dhawale, C. Lokhande, Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co (OH) 2] thin film electrodes, Electrochim. Acta, 98 (2013) 32–38.

DOI: 10.1016/j.electacta.2013.02.094

Google Scholar

[13] J. H. Shendkar et al., Polyaniline-cobalt hydroxide hybrid nanostructures and their supercapacitor studies, Mater. Chem. Phy., 180 (2016) 226–236.

Google Scholar

[14] L. Zhang, L. Chen, B. Qi, G. Yang, J. Gong, Synthesis of vertical aligned TiO 2@ polyaniline core-shell nanorods for high-performance supercapacitors, RSC Advances 5 (2015) 1680–1683.

DOI: 10.1039/c4ra10818c

Google Scholar

[15] L. Chen et al., Synthesis and electrochemical performance of polyaniline-MnO 2 nanowire composites for supercapacitors, J. Phy. Chem. Soli., 74 (2013) 360–365.

Google Scholar

[16] M. Moussa et al., High-performance supercapacitors using graphene/polyaniline composites deposited on kitchen sponge, Nanotechnol., 26 (2015) 075702.

DOI: 10.1088/0957-4484/26/7/075702

Google Scholar

[17] A. Abdolahi, E. Hamzah, Z. Ibrahim, S. Hashim, Synthesis of uniform polyaniline nanofibers through interfacial polymerization, Mater., 5 (2012) 1487–1494.

DOI: 10.3390/ma5081487

Google Scholar

[18] C.-L. Zhu, S.-W. Chou, S.-F. He, W.-N. Liao, C.-C. Chen, Synthesis of core/shell metal oxide/polyaniline nanocomposites and hollow polyaniline capsules, Nanotechnol., 18 (2007) 275604.

DOI: 10.1088/0957-4484/18/27/275604

Google Scholar

[19] N. Muthukumar, G. Thilagavathi, T. Kannaian, Polyaniline-coated polyurethane foam for pressure sensor applications, Hi. Perform. Poly., 28 (2016) 368–375.

DOI: 10.1177/0954008315583703

Google Scholar

[20] F. Chen, C. Yang, Study on Preparation of Conducting Polyaniline/Polyurethane Foam and Its Use in Silver Ion Recovery, Polymer. Sci., 25 (2011) 112-117.

Google Scholar

[21] A. Dey, S. De, A. De, S. De, Characterization and dielectric properties of polyaniline-TiO2 nanocomposites, Nanotechnol., 15 (2004) 1277-1285.

Google Scholar

[22] J. Huang, S. Virji, B. H. Weiller, R. B. Kaner, Polyaniline nanofibers: facile synthesis and chemical sensors., J. Am. Chem. Soc., 125 (2003) 314–5.

DOI: 10.1021/ja028371y

Google Scholar

[23] S. M. Pethe, S. B. Kondawar, Optical and electrical properties of conducting polyaniline nanofibers synthesized by interfacial and rapid mixing polymerization, Advan. Mater. Lett., 5 (2014) 728–733.

DOI: 10.5185/amlett.2014.amwc550

Google Scholar

[24] W. Chen, R. Rakhi, L. Hu, X. Xie, Y. Cui, H. N. Alshareef, High-performance nanostructured supercapacitors on a sponge, Nano Lett., 11 (2011) 5165–5172.

DOI: 10.1021/nl2023433

Google Scholar