Investigations of Non-Linear Viscoelastic Properties for Polypropylene/Clay-Nanocomposites through Melt Flow Birefringence and Damping Function

Article Preview

Abstract:

Rheological investigations are reported for pure polypropylene and its clay-nanocomposites to establish viscoelastic properties and filler concentration relationship. Flow birefringence is performed through a slit-die to obtain centerline principal stress difference during extensional flow. The centerline stress profile of clay-nanocomposite revealed additional viscoelastic nature even at low silicate concentrations whereas no exceptional strain hardening was reported. Effects of higher filler concentrations are further examined during the simple shearing flow to consider non-linear viscoelasticity in terms of damping function. The increase in damping coefficient with increasing clay concentration shows polymer-nanocomposites are more strain sensitive. The Wagner's exponential damping function could adequately describe the time-strain separability at all clay concentrations studied. The results of both investigations reveal that the polymers are time-strain separable at all clay concentrations studied during elongational and simple shearing flows, whereas filler orientations are found to be different for different melt flow behavior.

You have full access to the following eBook

Info:

[1] B. Momani, M. Sen, M. Endoh, X. Wang, T. Koga, H.H. Winter, Temperature dependent intercalation and self exfoliation of clay/polymer nanocomposite, Polymer., 93 (2016) 204-212.

DOI: 10.1016/j.polymer.2016.03.010

Google Scholar

[2] M. Nematollahi, A. Jalali-Arani, K. Golzar, Organoclay maleated natural rubber nanocomposite. Prediction of abrasion and mechanical properties by artificial neural network and adaptive neuro-fuzzy inference, Appl. Clay Sci., 97-98 (2014) 187-199.

DOI: 10.1016/j.clay.2014.05.027

Google Scholar

[3] M.Z. Iqbal, A.A. Abdala, V. Mittal, S.n. Seifert, A.M. Herring, M.W. Liberatore, Processable conductive graphene/polyethylene nanocomposites: Effects of graphene dispersion and polyethylene blending with oxidized polyethylene on rheology and microstructure, Polymer., 98 (2016).

DOI: 10.1016/j.polymer.2016.06.021

Google Scholar

[4] M. Ganjaee Sari, B. Ramezanzadeh, A.S. Pakdel, M. Shahbazi, A physico-mechanical investigation of a novel hyperbranched polymer-modified clay/epoxy nanocomposite coating, Prog. Org Coat., 99 (2016) 263-273.

DOI: 10.1016/j.porgcoat.2016.06.003

Google Scholar

[5] M. Kotal, A.K. Bhowmick, Polymer nanocomposites from modified clays: Recent advances and challenges, Prog. Polym Sci., 51 (2015) 127-187.

DOI: 10.1016/j.progpolymsci.2015.10.001

Google Scholar

[6] S. Sinha Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci., 28 (2003) 1539-1641.

DOI: 10.1016/j.progpolymsci.2003.08.002

Google Scholar

[7] M.A. Treece, W. Zhang, R.D. Moffitt, J.P. Oberhauser, Twin-screw extrusion of polypropylene-clay nanocomposites: Influence of masterbatch processing, screw rotation mode, and sequence, Polym. Eng. Sci., 47 (2007) 898-911.

DOI: 10.1002/pen.20774

Google Scholar

[8] Q.H. Zeng, A.B. Yu, G.Q. Lu, Multiscale modeling and simulation of polymer nanocomposites, Prog. Polym Sci., 33 (2008) 191-269.

Google Scholar

[9] G.G. Fuller, Optical rheometry of complex fluids, Oxford University Press, New York, (1995).

Google Scholar

[10] R. Muller, B. Vergnes, J.M. Piau, J.F. Agassant, Rheology Series, Elsevier, 1996, pp.257-284.

Google Scholar

[11] H. Janeschitz-Kriegl, Polymer melt rheology and flow birefringence, Springer Science & Business Media, (2012).

Google Scholar

[12] A.S. Lodge, Variation of flow birefringence with stress, Nat., 176 (1955) 838-839.

Google Scholar

[13] C.W. Macosko, Rheology, Principles, Measurements and Applications, VCH Publishers Inc., New York, (1994).

Google Scholar

[14] K.E. Strawhecker, E. Manias, Structure and properties of poly (vinyl alcohol)/Na+ montmorillonite nanocomposites, Chem Mater., 12 (2000) 2943-2949.

DOI: 10.1021/cm000506g

Google Scholar

[15] S. Suin, S. Maiti, N.K. Shrivastava, B.B. Khatua, Mechanically improved and optically transparent polycarbonate/clay nanocomposites using phosphonium modified organoclay, Mater. Desig., 54 (2014) 553-563.

DOI: 10.1016/j.matdes.2013.08.091

Google Scholar

[16] S. Suin, N.K. Shrivastava, S. Maiti, B.B. Khatua, Phosphonium modified organoclay as potential nanofiller for the development of exfoliated and optically transparent polycarbonate/clay nanocomposites: Preparation and characterizations, Eur. Poly. J., 49 (2013).

DOI: 10.1016/j.eurpolymj.2012.10.004

Google Scholar

[17] S.H. Lee, J.R. Youn, Properties of polypropylene/layered-silicate nanocomposites and melt-spun fibers, J. Appl. Polym. Sci., 109 (2008) 1221-1231.

DOI: 10.1002/app.28222

Google Scholar

[18] S. Hwan Lee, E. Cho, J. Ryoun Youn, Rheological behavior of polypropylene/layered silicate nanocomposites prepared by melt compounding in shear and elongational flows, J. Appl Polym Sci., 103 (2007) 3506-3515.

DOI: 10.1002/app.25204

Google Scholar

[19] M. Okamoto, P.H. Nam, P. Maiti, T. Kotaka, N. Hasegawa, A. Usuki, A house of cards structure in polypropylene/clay nanocomposites under elongational flow, Nano Lett., 1 (2001) 295-298.

DOI: 10.1021/nl0100163

Google Scholar

[20] R. Krishnamoorti, J. Ren, A.S. Silva, Shear response of layered silicate nanocomposites, The J. Chem. Phy., 114 (2001) 4968-4973.

DOI: 10.1063/1.1345908

Google Scholar

[21] Y. Zhong, Z. Zhu, S.-Q. Wang, Synthesis and rheological properties of polystyrene/layered silicate nanocomposite, Polymer., 46 (2005) 3006-3013.

DOI: 10.1016/j.polymer.2005.02.014

Google Scholar

[22] S. Pujari, L. Dougherty, C. Mobuchon, P. Carreau, M.-C. Heuzey, W. Burghardt, X-ray scattering measurements of particle orientation in a sheared polymer/clay dispersion, Rheolog. Acta. , 50 (2011) 3-16.

DOI: 10.1007/s00397-010-0492-3

Google Scholar

[23] T. Aubry, T. Razafinimaro, P. Mederic, Rheological investigation of the melt state elastic and yield properties of a polyamide-12 layered silicate nanocomposite, J. Rheol., 49 (2005) 425-440.

DOI: 10.1122/1.1859791

Google Scholar

[24] T. Takahashi, J.i. Takimoto, K. Koyama, Uniaxial elongational viscosity of various molten polymer composites, Polym Composite., 20 (1999) 357-366.

DOI: 10.1002/pc.10362

Google Scholar

[25] V.H. Rolon-Garrido, M.H. Wagner, The damping function in rheology, Rheologi. Acta., 48 (2009) 245-284.

Google Scholar

[26] R. Kotsilkova, Rheology-structure relationship of polymer/layered silicate hybrids, Mech. Time-Depend. Mater., 6 (2002) 283-300.

Google Scholar

[27] A.C. Papanastasiou, L.E. Scriven, C.W. Macosko, An integral constitutive equation for mixed flows: viscoelastic characterization, J. Rheol., 27 (1983) 387-410.

DOI: 10.1122/1.549712

Google Scholar

[28] J. Ren, R. Krishnamoorti, Nonlinear viscoelastic properties of layered-silicate-based intercalated nanocomposites, Macromolec., 36 (2003) 4443-4451.

DOI: 10.1021/ma020412n

Google Scholar

[29] M.H. Wagner, Zur Netzwerktheorie von Polymer-Schmelzen, Rheologica Acta. 18 (1979) 33-50.

DOI: 10.1007/bf01515686

Google Scholar

[30] M.R. Mackley, R.T.J. Marshall, J.B.A.F. Smeulders, F.D. Zhao, The rheological characterization of polymeric and colloidal fluids, Chem.l Eng. Sci., 49 (1994) 2551-2565.

DOI: 10.1016/0009-2509(94)e0082-2

Google Scholar

[31] J. D. Shaw, M. Jaison, E. Amj, Nonlinear viscoelastic properties, J. Rheol., 23 (2010) 241-249.

Google Scholar

[32] J.L.S. Wales, Delft University of Technology, Delft, Netherlands, (1976).

Google Scholar

[33] S.T.E. Aldhouse, M.R. Mackley, I.P.T. Moore, Experimental and linear viscoelastic stress distribution measurements of high density polyethylene flowing into and within a slit, J. Non-Newt. Fluid Mech., 21 (1986) 359-376.

DOI: 10.1016/0377-0257(86)80046-5

Google Scholar

[34] H.J. Park, D.G. Kiriakidis, E. Mitsoulis, K.J. Lee, Birefringence studies in die flows of an HDPE melt, J. Rheol., 36 (1992) 1563-1583.

DOI: 10.1122/1.550366

Google Scholar

[35] M.T. Martyn, C. Nakason, P.D. Coates, Flow visualisation of polymer melts in abrupt contraction extrusion dies: quantification of melt recirculation and flow patterns, J. Non-Newt. Fluid Mech., 91 (2000) 109-122.

DOI: 10.1016/s0377-0257(99)00107-x

Google Scholar

[36] M.T. Martyn, C. Nakason, P.D. Coates, Stress measurements for contraction flows of viscoelastic polymer melts, J. Non-Newt. Fluid Mech., 91 (2000) 123-142.

DOI: 10.1016/s0377-0257(99)00108-1

Google Scholar

[37] R. Ahmed, Fitzwilliam College, University of Cambridge, England, (1993).

Google Scholar

[38] L. Robert, B. Vergnes, Y. Demay, Flow birefringence study of the stick-slip instability during extrusion of high-density polyethylenes, J. Non-Newt. Fluid Mech., 112 (2003) 27-42.

DOI: 10.1016/s0377-0257(03)00059-4

Google Scholar

[39] D.R. Arda, M.R. Mackley, The effect of die exit curvature, die surface roughness and a fluoropolymer additive on sharkskin extrusion instabilities in polyethylene processing, J. Non-Newt. Fluid Mech., 126 (2005) 47-61.

DOI: 10.1016/j.jnnfm.2004.12.005

Google Scholar

[40] H. Janeschitz-Kriegl, Polymer Melt Rheology and Flow Birefringence, Springer-Verlag, Berlin Heidelberg New York (1983).

DOI: 10.1002/food.19850290208

Google Scholar

[41] R. Muller, B. Vergnes, Validity of the stress optical law and application of birefringence to polymer complex flows, Rheol. Ser., 5 (1996) 257-284.

DOI: 10.1016/s0169-3107(96)80010-4

Google Scholar

[42] N. Checker, M.R. Mackley, D.W. Mead, On the flow of molten polymer into, within and out of ducts, Phil. Trans. R. Soc. Lond. A., 308 (1983) 451-477.

DOI: 10.1098/rsta.1983.0015

Google Scholar

[43] K. Wang, S. Liang, J. Deng, H. Yang, Q. Zhang, Q. Fu, X. Dong, D. Wang, C.C. Han, The role of clay network on macromolecular chain mobility and relaxation in isotactic polypropylene/organoclay nanocomposites, Polymer., 47 (2006) 7131-7144.

DOI: 10.1016/j.polymer.2006.07.067

Google Scholar

[44] Y. Goutille, J.-C. Majeste, J.-F.o. Tassin, J. Guillet, Molecular structure and gross melt fracture triggering, J. Non-Newt. Fluid Mech., 111 (2003) 175-198.

DOI: 10.1016/s0377-0257(03)00054-5

Google Scholar

[45] M.W. Collis, M.R. Mackley, The melt processing of monodisperse and polydisperse polystyrene melts within a slit entry and exit flow, J. Non-Newt. Fluid Mech., 128 (2005) 29-41.

DOI: 10.1016/j.jnnfm.2005.02.010

Google Scholar

[46] W. Lertwimolnun, B. Vergnes, Influence of compatibilizer and processing conditions on the dispersion of nanoclay in a polypropylene matrix, Polymer., 46 (2005) 3462-3471.

DOI: 10.1016/j.polymer.2005.02.018

Google Scholar

[47] S.Y. Gu, J. Ren, Q.F. Wang, Rheology of poly (propylene)/clay nanocomposites, J. Appl. Polym., Sci. 91 (2004) 2427-2434.

DOI: 10.1002/app.13403

Google Scholar