[1]
B. Momani, M. Sen, M. Endoh, X. Wang, T. Koga, H.H. Winter, Temperature dependent intercalation and self exfoliation of clay/polymer nanocomposite, Polymer., 93 (2016) 204-212.
DOI: 10.1016/j.polymer.2016.03.010
Google Scholar
[2]
M. Nematollahi, A. Jalali-Arani, K. Golzar, Organoclay maleated natural rubber nanocomposite. Prediction of abrasion and mechanical properties by artificial neural network and adaptive neuro-fuzzy inference, Appl. Clay Sci., 97-98 (2014) 187-199.
DOI: 10.1016/j.clay.2014.05.027
Google Scholar
[3]
M.Z. Iqbal, A.A. Abdala, V. Mittal, S.n. Seifert, A.M. Herring, M.W. Liberatore, Processable conductive graphene/polyethylene nanocomposites: Effects of graphene dispersion and polyethylene blending with oxidized polyethylene on rheology and microstructure, Polymer., 98 (2016).
DOI: 10.1016/j.polymer.2016.06.021
Google Scholar
[4]
M. Ganjaee Sari, B. Ramezanzadeh, A.S. Pakdel, M. Shahbazi, A physico-mechanical investigation of a novel hyperbranched polymer-modified clay/epoxy nanocomposite coating, Prog. Org Coat., 99 (2016) 263-273.
DOI: 10.1016/j.porgcoat.2016.06.003
Google Scholar
[5]
M. Kotal, A.K. Bhowmick, Polymer nanocomposites from modified clays: Recent advances and challenges, Prog. Polym Sci., 51 (2015) 127-187.
DOI: 10.1016/j.progpolymsci.2015.10.001
Google Scholar
[6]
S. Sinha Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci., 28 (2003) 1539-1641.
DOI: 10.1016/j.progpolymsci.2003.08.002
Google Scholar
[7]
M.A. Treece, W. Zhang, R.D. Moffitt, J.P. Oberhauser, Twin-screw extrusion of polypropylene-clay nanocomposites: Influence of masterbatch processing, screw rotation mode, and sequence, Polym. Eng. Sci., 47 (2007) 898-911.
DOI: 10.1002/pen.20774
Google Scholar
[8]
Q.H. Zeng, A.B. Yu, G.Q. Lu, Multiscale modeling and simulation of polymer nanocomposites, Prog. Polym Sci., 33 (2008) 191-269.
Google Scholar
[9]
G.G. Fuller, Optical rheometry of complex fluids, Oxford University Press, New York, (1995).
Google Scholar
[10]
R. Muller, B. Vergnes, J.M. Piau, J.F. Agassant, Rheology Series, Elsevier, 1996, pp.257-284.
Google Scholar
[11]
H. Janeschitz-Kriegl, Polymer melt rheology and flow birefringence, Springer Science & Business Media, (2012).
Google Scholar
[12]
A.S. Lodge, Variation of flow birefringence with stress, Nat., 176 (1955) 838-839.
Google Scholar
[13]
C.W. Macosko, Rheology, Principles, Measurements and Applications, VCH Publishers Inc., New York, (1994).
Google Scholar
[14]
K.E. Strawhecker, E. Manias, Structure and properties of poly (vinyl alcohol)/Na+ montmorillonite nanocomposites, Chem Mater., 12 (2000) 2943-2949.
DOI: 10.1021/cm000506g
Google Scholar
[15]
S. Suin, S. Maiti, N.K. Shrivastava, B.B. Khatua, Mechanically improved and optically transparent polycarbonate/clay nanocomposites using phosphonium modified organoclay, Mater. Desig., 54 (2014) 553-563.
DOI: 10.1016/j.matdes.2013.08.091
Google Scholar
[16]
S. Suin, N.K. Shrivastava, S. Maiti, B.B. Khatua, Phosphonium modified organoclay as potential nanofiller for the development of exfoliated and optically transparent polycarbonate/clay nanocomposites: Preparation and characterizations, Eur. Poly. J., 49 (2013).
DOI: 10.1016/j.eurpolymj.2012.10.004
Google Scholar
[17]
S.H. Lee, J.R. Youn, Properties of polypropylene/layered-silicate nanocomposites and melt-spun fibers, J. Appl. Polym. Sci., 109 (2008) 1221-1231.
DOI: 10.1002/app.28222
Google Scholar
[18]
S. Hwan Lee, E. Cho, J. Ryoun Youn, Rheological behavior of polypropylene/layered silicate nanocomposites prepared by melt compounding in shear and elongational flows, J. Appl Polym Sci., 103 (2007) 3506-3515.
DOI: 10.1002/app.25204
Google Scholar
[19]
M. Okamoto, P.H. Nam, P. Maiti, T. Kotaka, N. Hasegawa, A. Usuki, A house of cards structure in polypropylene/clay nanocomposites under elongational flow, Nano Lett., 1 (2001) 295-298.
DOI: 10.1021/nl0100163
Google Scholar
[20]
R. Krishnamoorti, J. Ren, A.S. Silva, Shear response of layered silicate nanocomposites, The J. Chem. Phy., 114 (2001) 4968-4973.
DOI: 10.1063/1.1345908
Google Scholar
[21]
Y. Zhong, Z. Zhu, S.-Q. Wang, Synthesis and rheological properties of polystyrene/layered silicate nanocomposite, Polymer., 46 (2005) 3006-3013.
DOI: 10.1016/j.polymer.2005.02.014
Google Scholar
[22]
S. Pujari, L. Dougherty, C. Mobuchon, P. Carreau, M.-C. Heuzey, W. Burghardt, X-ray scattering measurements of particle orientation in a sheared polymer/clay dispersion, Rheolog. Acta. , 50 (2011) 3-16.
DOI: 10.1007/s00397-010-0492-3
Google Scholar
[23]
T. Aubry, T. Razafinimaro, P. Mederic, Rheological investigation of the melt state elastic and yield properties of a polyamide-12 layered silicate nanocomposite, J. Rheol., 49 (2005) 425-440.
DOI: 10.1122/1.1859791
Google Scholar
[24]
T. Takahashi, J.i. Takimoto, K. Koyama, Uniaxial elongational viscosity of various molten polymer composites, Polym Composite., 20 (1999) 357-366.
DOI: 10.1002/pc.10362
Google Scholar
[25]
V.H. Rolon-Garrido, M.H. Wagner, The damping function in rheology, Rheologi. Acta., 48 (2009) 245-284.
Google Scholar
[26]
R. Kotsilkova, Rheology-structure relationship of polymer/layered silicate hybrids, Mech. Time-Depend. Mater., 6 (2002) 283-300.
Google Scholar
[27]
A.C. Papanastasiou, L.E. Scriven, C.W. Macosko, An integral constitutive equation for mixed flows: viscoelastic characterization, J. Rheol., 27 (1983) 387-410.
DOI: 10.1122/1.549712
Google Scholar
[28]
J. Ren, R. Krishnamoorti, Nonlinear viscoelastic properties of layered-silicate-based intercalated nanocomposites, Macromolec., 36 (2003) 4443-4451.
DOI: 10.1021/ma020412n
Google Scholar
[29]
M.H. Wagner, Zur Netzwerktheorie von Polymer-Schmelzen, Rheologica Acta. 18 (1979) 33-50.
DOI: 10.1007/bf01515686
Google Scholar
[30]
M.R. Mackley, R.T.J. Marshall, J.B.A.F. Smeulders, F.D. Zhao, The rheological characterization of polymeric and colloidal fluids, Chem.l Eng. Sci., 49 (1994) 2551-2565.
DOI: 10.1016/0009-2509(94)e0082-2
Google Scholar
[31]
J. D. Shaw, M. Jaison, E. Amj, Nonlinear viscoelastic properties, J. Rheol., 23 (2010) 241-249.
Google Scholar
[32]
J.L.S. Wales, Delft University of Technology, Delft, Netherlands, (1976).
Google Scholar
[33]
S.T.E. Aldhouse, M.R. Mackley, I.P.T. Moore, Experimental and linear viscoelastic stress distribution measurements of high density polyethylene flowing into and within a slit, J. Non-Newt. Fluid Mech., 21 (1986) 359-376.
DOI: 10.1016/0377-0257(86)80046-5
Google Scholar
[34]
H.J. Park, D.G. Kiriakidis, E. Mitsoulis, K.J. Lee, Birefringence studies in die flows of an HDPE melt, J. Rheol., 36 (1992) 1563-1583.
DOI: 10.1122/1.550366
Google Scholar
[35]
M.T. Martyn, C. Nakason, P.D. Coates, Flow visualisation of polymer melts in abrupt contraction extrusion dies: quantification of melt recirculation and flow patterns, J. Non-Newt. Fluid Mech., 91 (2000) 109-122.
DOI: 10.1016/s0377-0257(99)00107-x
Google Scholar
[36]
M.T. Martyn, C. Nakason, P.D. Coates, Stress measurements for contraction flows of viscoelastic polymer melts, J. Non-Newt. Fluid Mech., 91 (2000) 123-142.
DOI: 10.1016/s0377-0257(99)00108-1
Google Scholar
[37]
R. Ahmed, Fitzwilliam College, University of Cambridge, England, (1993).
Google Scholar
[38]
L. Robert, B. Vergnes, Y. Demay, Flow birefringence study of the stick-slip instability during extrusion of high-density polyethylenes, J. Non-Newt. Fluid Mech., 112 (2003) 27-42.
DOI: 10.1016/s0377-0257(03)00059-4
Google Scholar
[39]
D.R. Arda, M.R. Mackley, The effect of die exit curvature, die surface roughness and a fluoropolymer additive on sharkskin extrusion instabilities in polyethylene processing, J. Non-Newt. Fluid Mech., 126 (2005) 47-61.
DOI: 10.1016/j.jnnfm.2004.12.005
Google Scholar
[40]
H. Janeschitz-Kriegl, Polymer Melt Rheology and Flow Birefringence, Springer-Verlag, Berlin Heidelberg New York (1983).
DOI: 10.1002/food.19850290208
Google Scholar
[41]
R. Muller, B. Vergnes, Validity of the stress optical law and application of birefringence to polymer complex flows, Rheol. Ser., 5 (1996) 257-284.
DOI: 10.1016/s0169-3107(96)80010-4
Google Scholar
[42]
N. Checker, M.R. Mackley, D.W. Mead, On the flow of molten polymer into, within and out of ducts, Phil. Trans. R. Soc. Lond. A., 308 (1983) 451-477.
DOI: 10.1098/rsta.1983.0015
Google Scholar
[43]
K. Wang, S. Liang, J. Deng, H. Yang, Q. Zhang, Q. Fu, X. Dong, D. Wang, C.C. Han, The role of clay network on macromolecular chain mobility and relaxation in isotactic polypropylene/organoclay nanocomposites, Polymer., 47 (2006) 7131-7144.
DOI: 10.1016/j.polymer.2006.07.067
Google Scholar
[44]
Y. Goutille, J.-C. Majeste, J.-F.o. Tassin, J. Guillet, Molecular structure and gross melt fracture triggering, J. Non-Newt. Fluid Mech., 111 (2003) 175-198.
DOI: 10.1016/s0377-0257(03)00054-5
Google Scholar
[45]
M.W. Collis, M.R. Mackley, The melt processing of monodisperse and polydisperse polystyrene melts within a slit entry and exit flow, J. Non-Newt. Fluid Mech., 128 (2005) 29-41.
DOI: 10.1016/j.jnnfm.2005.02.010
Google Scholar
[46]
W. Lertwimolnun, B. Vergnes, Influence of compatibilizer and processing conditions on the dispersion of nanoclay in a polypropylene matrix, Polymer., 46 (2005) 3462-3471.
DOI: 10.1016/j.polymer.2005.02.018
Google Scholar
[47]
S.Y. Gu, J. Ren, Q.F. Wang, Rheology of poly (propylene)/clay nanocomposites, J. Appl. Polym., Sci. 91 (2004) 2427-2434.
DOI: 10.1002/app.13403
Google Scholar