[1]
V.H. Smith, G.D. Tilman, J.C. Nekola, Eutrophication : impacts of excess nutrient inputs on freshwater , marine , and terrestrial ecosystems, Envir. Pollu., 100 (1999) 179-196.
DOI: 10.1016/s0269-7491(99)00091-3
Google Scholar
[2]
Y.H. Tong, Y.C. Liu, S.X. Lu, L. Dong, S.J. Chen, Z.Y. Xiao, The optical properties of ZnO nanoparticles capped with polyvinyl butyral, J. Sol-Gel Sci. Technol., 30 (2004) 157–161.
DOI: 10.1023/b:jsst.0000039500.48283.5a
Google Scholar
[3]
N.M. Bahadur, T. Furusawa, M. Sato, F. Kurayama, N. Suzuki, Rapid synthesis, characterization and optical properties of TiO2 coated ZnO nanocomposite particles by a novel microwave irradiation method, Mater. Res. Bull., 45 (2010) 1383–1388.
DOI: 10.1016/j.materresbull.2010.06.048
Google Scholar
[4]
C. Zhao, J. Zhang, Y. Hu, N. Robertson, P.A. Hu, D. Child, D. Gibson, Y.Q. Fu, In-situ microfluidic controlled, low temperature hydrothermal growth of nanoflakes for dye-sensitized solar cells., Sci. Rep., 5 (2015) 17750-17759.
DOI: 10.1038/srep17750
Google Scholar
[5]
M. Liu, L. Piao, W. Wang, Hierarchical TiO2 spheres: Facile fabrication and enhanced photocatalysis, Rare Met. 30 (2011) 153–156.
DOI: 10.1007/s12598-011-0259-8
Google Scholar
[6]
J.Y. Park, C.S. Kim, K. Okuyama, H.M. Lee, H.D. Jang, S.E. Lee, T.O. Kim, Copper and nitrogen doping on TiO2 photoelectrodes and their functions in dye-sensitized solar cells, J. Pow. Sour., 306 (2016) 764–771.
DOI: 10.1016/j.jpowsour.2015.12.087
Google Scholar
[7]
W. Luo, L. Zhu, N. Wang, H. Tang, M. Cao, Y. She, Efficient removal of organic pollutants with magnetic Nanoscaled BiFeO(3) as a reusable heterogeneous fenton-like catalyst. TL - 44, Environ. Sci. Technol., 44 (2010) 1786–1791.
DOI: 10.1021/es903390g
Google Scholar
[8]
M. Pumera, Nanohybrids of Two-Dimensional Transition Metal Dichalcogenides and Titanium Dioxide for Photocatalytic Applications, Chem. - A Eur. J., 23 (2017) 323-341.
DOI: 10.1002/chem.201703434
Google Scholar
[9]
U. Diebold, Structure and properties of TiO2 surfaces: A brief review, Appl. Phys. A Mater. Sci. Process., 76 (2003) 681–687.
Google Scholar
[10]
J.-Y. Park, C. Lee, K.-W. Jung, D. Jung, Structure Related Photocatalytic Properties of TiO2, Bull. Korean Chem. Soc., 30 (2009) 402–404.
Google Scholar
[11]
Y. Duan, N. Fu, Q. Liu, Y. Fang, X. Zhou, J. Zhang, and Y. Lin, Sn-Doped TiO2 Photoanode for Dye-Sensitized Solar Cells, J. Phys.Chem. C, 116 (2012) 8888–8893.
DOI: 10.1021/jp212517k
Google Scholar
[12]
P. Xiang, W. Ma, T. Xiao, L. Jiang, X. Tan, T. Shu, Ta-doped hierarchical TiO2 spheres for dye-sensitized solar cells, J. All. Compd., 656 (2016) 45–50.
DOI: 10.1016/j.jallcom.2015.09.203
Google Scholar
[13]
W.P. Zhang, X.Y. Xiao, L.L. Zheng, C.X. Wan, Fabrication of TiO2/MoS2 Composite Photocatalyst and Its Photocatalytic Mechanism for Degradation of Methyl Orange under Visible Light, Can. J. Chem. Eng., 93 (2015) 1594–1602.
DOI: 10.1002/cjce.22245
Google Scholar
[14]
G. Lui, J.Y. Liao, A.S. Duan, Z.S. Zhang, M. Fowler, A.P. Yu, Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance, J. Mater. Chem. A., 1 (2013) 12255–12262.
DOI: 10.1039/c3ta12329d
Google Scholar
[15]
M. Chhowalla, H.S. Shin, G. Eda, L. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Publ. Gr. 5 (2013) 263–275.
DOI: 10.1038/nchem.1589
Google Scholar
[16]
G. Cunningham, M. Lotya, C.S. Cucinotta, S. Sanvito, S.D. Bergin, R. Menzel, M.S.P. Shaffer, J.N. Coleman, Solvent exfoliation of transition metal dichalcogenides: Dispersibility of exfoliated nanosheets varies only weakly between compounds, ACS Nano., 6 (2012).
DOI: 10.1021/nn300503e
Google Scholar
[17]
X. Li, H. Zhu, ScienceDirect Two-dimensional MoS 2 : Properties , preparation , and applications, J. Materiomi., 1 (2015) 110-118.
Google Scholar
[18]
W. Ho, J.C. Yu, J. Lin, J. Yu, P. Li, Preparation and Photocatalytic Behavior of MoS 2 and WS 2 Nanocluster Sensitized TiO 2, Langmuir. 20 (2004) 5865–5869.
DOI: 10.1021/la049838g
Google Scholar
[19]
Q. Xiang, J. Yu, M. Jaroniec, Synergetic effect of MoS 2 and graphene as cocatalysts for enhanced photocatalytic H 2 production activity of TiO 2 nanoparticles, J. Am. Chem. Soc., 134 (2012) 6575–6578.
DOI: 10.1021/ja302846n
Google Scholar
[20]
S. Javed, M. Mujahid, M. Islam, U. Manzoor, Morphological effects of reflux condensation on nanocrystalline anatase gel and thin films, Mater. Chem. Phys., 132 (2012) 509–514.
DOI: 10.1016/j.matchemphys.2011.11.062
Google Scholar
[21]
X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Hydrogenated TiO 2 nanotube arrays for supercapacitors, Nano Lett., 12 (2012) 1690–1696.
DOI: 10.1021/nl300173j
Google Scholar
[22]
W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, Q. Chen, Raman scattering study on anatase TiO2 nanocrystals, J. Phys. D. Appl. Phys., 33 (2000) 912–916.
DOI: 10.1088/0022-3727/33/8/305
Google Scholar
[23]
S. Lakshmi, R. Renganathan, S. Fujita, Study on TiO2-mediated photocatalytic degradation of methylene blue, J. Photochem. Photobiol. A Chem., 88 (1995) 163–167.
DOI: 10.1016/1010-6030(94)04030-6
Google Scholar
[24]
W.H. Wei C., Zhang, F. Hu F., Feng, C., Ozonation in water treatment: the generation, basic properties of ozone and its practical application, Rev. Chem. Eng., 167 (2016) 2191–235.
DOI: 10.1515/revce-2016-0008
Google Scholar
[25]
I. Tacchini, E. Terrado, A. Anson, M.T. Martinez, Preparation of a TiO2-MoS2 nanoparticle-based composite by solvothermal method with enhanced photoactivity for the degradation of organic molecules in water under UV light, Micro Nano Lett., 6 (2011).
DOI: 10.1049/mnl.2011.0460
Google Scholar
[26]
K.H. Hu, X.G. Hu, Y.F. Xu, J.D. Sun, Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange, J. Mater. Sci., 45 (2010) 2640–2648.
DOI: 10.1007/s10853-010-4242-9
Google Scholar
[27]
H. Nguyen, T. Phung, V.N.K. Tran, L.T. Nguyen, L. Kieu, T. Phan, P.A. Duong, H. Vu, T. Le, Investigating Visible-Photocatalytic Activity of MoS 2 / TiO 2 Heterostructure Thin Films at Various MoS 2 Deposition Times, J. Nanomat., 11 (2017) 12-18.
DOI: 10.1155/2017/3197540
Google Scholar