Synthesis and Characterization of MoS2/TiO2 Nanocomposites for Enhanced Photocatalytic Degradation of Methylene Blue under Sunlight Irradiation

Article Preview

Abstract:

2D nanosheets/ nanoparticles based MoS2/TiO2 nanocomposites were prepared in different weight compositions which were further employed to investigate photocatalytic degradation of methylene blue. Anatase TiO2 powder was prepared via sol-gel reflux method using titanium tetraisopropoxide as Ti precursor. MoS2/TiO2 nanocomposites were prepared by in situ addition of exfoliated MoS2 (2D-nanosheets) in different weight ratios of 0.1%, 0.5%, 1%, 2% and 5% in TiO2 sol. Surface morphology, phase analysis, optical properties were studied using SEM, XRD, UV-Vis spectroscopy respectively. SEM results showed that TiO2 nanoparticles were completely adsorbed over the surface of MoS2 sheets as reflux synthesis was employed. Efficient charge carrier separation was achieved which reduced recombination, and hence, enhanced photo-degradation of methylene blue was observed. The hetero-structures showed less operation time in sunlight for photodegradation of methylene blue and a highest rate constant was observed by 2 wt.% loading of MoS2 on TiO2. These composites can also be used commercially as they show promising results.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] V.H. Smith, G.D. Tilman, J.C. Nekola, Eutrophication : impacts of excess nutrient inputs on freshwater , marine , and terrestrial ecosystems, Envir. Pollu., 100 (1999) 179-196.

DOI: 10.1016/s0269-7491(99)00091-3

Google Scholar

[2] Y.H. Tong, Y.C. Liu, S.X. Lu, L. Dong, S.J. Chen, Z.Y. Xiao, The optical properties of ZnO nanoparticles capped with polyvinyl butyral, J. Sol-Gel Sci. Technol., 30 (2004) 157–161.

DOI: 10.1023/b:jsst.0000039500.48283.5a

Google Scholar

[3] N.M. Bahadur, T. Furusawa, M. Sato, F. Kurayama, N. Suzuki, Rapid synthesis, characterization and optical properties of TiO2 coated ZnO nanocomposite particles by a novel microwave irradiation method, Mater. Res. Bull., 45 (2010) 1383–1388.

DOI: 10.1016/j.materresbull.2010.06.048

Google Scholar

[4] C. Zhao, J. Zhang, Y. Hu, N. Robertson, P.A. Hu, D. Child, D. Gibson, Y.Q. Fu, In-situ microfluidic controlled, low temperature hydrothermal growth of nanoflakes for dye-sensitized solar cells., Sci. Rep., 5 (2015) 17750-17759.

DOI: 10.1038/srep17750

Google Scholar

[5] M. Liu, L. Piao, W. Wang, Hierarchical TiO2 spheres: Facile fabrication and enhanced photocatalysis, Rare Met. 30 (2011) 153–156.

DOI: 10.1007/s12598-011-0259-8

Google Scholar

[6] J.Y. Park, C.S. Kim, K. Okuyama, H.M. Lee, H.D. Jang, S.E. Lee, T.O. Kim, Copper and nitrogen doping on TiO2 photoelectrodes and their functions in dye-sensitized solar cells, J. Pow. Sour., 306 (2016) 764–771.

DOI: 10.1016/j.jpowsour.2015.12.087

Google Scholar

[7] W. Luo, L. Zhu, N. Wang, H. Tang, M. Cao, Y. She, Efficient removal of organic pollutants with magnetic Nanoscaled BiFeO(3) as a reusable heterogeneous fenton-like catalyst. TL - 44, Environ. Sci. Technol., 44 (2010) 1786–1791.

DOI: 10.1021/es903390g

Google Scholar

[8] M. Pumera, Nanohybrids of Two-Dimensional Transition Metal Dichalcogenides and Titanium Dioxide for Photocatalytic Applications, Chem. - A Eur. J., 23 (2017) 323-341.

DOI: 10.1002/chem.201703434

Google Scholar

[9] U. Diebold, Structure and properties of TiO2 surfaces: A brief review, Appl. Phys. A Mater. Sci. Process., 76 (2003) 681–687.

Google Scholar

[10] J.-Y. Park, C. Lee, K.-W. Jung, D. Jung, Structure Related Photocatalytic Properties of TiO2, Bull. Korean Chem. Soc., 30 (2009) 402–404.

Google Scholar

[11] Y. Duan, N. Fu, Q. Liu, Y. Fang, X. Zhou, J. Zhang, and Y. Lin, Sn-Doped TiO2 Photoanode for Dye-Sensitized Solar Cells, J. Phys.Chem. C, 116 (2012) 8888–8893.

DOI: 10.1021/jp212517k

Google Scholar

[12] P. Xiang, W. Ma, T. Xiao, L. Jiang, X. Tan, T. Shu, Ta-doped hierarchical TiO2 spheres for dye-sensitized solar cells, J. All. Compd., 656 (2016) 45–50.

DOI: 10.1016/j.jallcom.2015.09.203

Google Scholar

[13] W.P. Zhang, X.Y. Xiao, L.L. Zheng, C.X. Wan, Fabrication of TiO2/MoS2 Composite Photocatalyst and Its Photocatalytic Mechanism for Degradation of Methyl Orange under Visible Light, Can. J. Chem. Eng., 93 (2015) 1594–1602.

DOI: 10.1002/cjce.22245

Google Scholar

[14] G. Lui, J.Y. Liao, A.S. Duan, Z.S. Zhang, M. Fowler, A.P. Yu, Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance, J. Mater. Chem. A., 1 (2013) 12255–12262.

DOI: 10.1039/c3ta12329d

Google Scholar

[15] M. Chhowalla, H.S. Shin, G. Eda, L. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Publ. Gr. 5 (2013) 263–275.

DOI: 10.1038/nchem.1589

Google Scholar

[16] G. Cunningham, M. Lotya, C.S. Cucinotta, S. Sanvito, S.D. Bergin, R. Menzel, M.S.P. Shaffer, J.N. Coleman, Solvent exfoliation of transition metal dichalcogenides: Dispersibility of exfoliated nanosheets varies only weakly between compounds, ACS Nano., 6 (2012).

DOI: 10.1021/nn300503e

Google Scholar

[17] X. Li, H. Zhu, ScienceDirect Two-dimensional MoS 2 : Properties , preparation , and applications, J. Materiomi., 1 (2015) 110-118.

Google Scholar

[18] W. Ho, J.C. Yu, J. Lin, J. Yu, P. Li, Preparation and Photocatalytic Behavior of MoS 2 and WS 2 Nanocluster Sensitized TiO 2, Langmuir. 20 (2004) 5865–5869.

DOI: 10.1021/la049838g

Google Scholar

[19] Q. Xiang, J. Yu, M. Jaroniec, Synergetic effect of MoS 2 and graphene as cocatalysts for enhanced photocatalytic H 2 production activity of TiO 2 nanoparticles, J. Am. Chem. Soc., 134 (2012) 6575–6578.

DOI: 10.1021/ja302846n

Google Scholar

[20] S. Javed, M. Mujahid, M. Islam, U. Manzoor, Morphological effects of reflux condensation on nanocrystalline anatase gel and thin films, Mater. Chem. Phys., 132 (2012) 509–514.

DOI: 10.1016/j.matchemphys.2011.11.062

Google Scholar

[21] X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Hydrogenated TiO 2 nanotube arrays for supercapacitors, Nano Lett., 12 (2012) 1690–1696.

DOI: 10.1021/nl300173j

Google Scholar

[22] W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, Q. Chen, Raman scattering study on anatase TiO2 nanocrystals, J. Phys. D. Appl. Phys., 33 (2000) 912–916.

DOI: 10.1088/0022-3727/33/8/305

Google Scholar

[23] S. Lakshmi, R. Renganathan, S. Fujita, Study on TiO2-mediated photocatalytic degradation of methylene blue, J. Photochem. Photobiol. A Chem., 88 (1995) 163–167.

DOI: 10.1016/1010-6030(94)04030-6

Google Scholar

[24] W.H. Wei C., Zhang, F. Hu F., Feng, C., Ozonation in water treatment: the generation, basic properties of ozone and its practical application, Rev. Chem. Eng., 167 (2016) 2191–235.

DOI: 10.1515/revce-2016-0008

Google Scholar

[25] I. Tacchini, E. Terrado, A. Anson, M.T. Martinez, Preparation of a TiO2-MoS2 nanoparticle-based composite by solvothermal method with enhanced photoactivity for the degradation of organic molecules in water under UV light, Micro Nano Lett., 6 (2011).

DOI: 10.1049/mnl.2011.0460

Google Scholar

[26] K.H. Hu, X.G. Hu, Y.F. Xu, J.D. Sun, Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange, J. Mater. Sci., 45 (2010) 2640–2648.

DOI: 10.1007/s10853-010-4242-9

Google Scholar

[27] H. Nguyen, T. Phung, V.N.K. Tran, L.T. Nguyen, L. Kieu, T. Phan, P.A. Duong, H. Vu, T. Le, Investigating Visible-Photocatalytic Activity of MoS 2 / TiO 2 Heterostructure Thin Films at Various MoS 2 Deposition Times, J. Nanomat., 11 (2017) 12-18.

DOI: 10.1155/2017/3197540

Google Scholar