Effect of Ethane-1,2-Diamine on Growth of ZnO Nanorods and Cyclohexane Sensing by Current-Voltage Characteristics Investigations

Article Preview

Abstract:

The growth of vertically aligned ZnO Nanorods arrays using Zinc Nitrate hexahydrate and Hexamethylene Tetramine (HMTA), by Chemical Bath Deposition on Silicon Wafer was investigated. The growth is conducted under influence of Ethane-1,2-diamine, the amine based enhancer was evaluated based on three different ratios (1:0.5, 1:1, 1:1.5) of enhancer to the precursor (Zinc Nitrate and HMTA). The effect different ratios of enhancers on morphology aspect ratio and crystallinity of the as grown Nanorods were studied under Scanning electron microscope (SEM) and X-ray powder diffraction (XRD). Electrical Properties such as current–voltage characteristics were investigated, its correlation to the morphology and aspect ratio of the Nanorods in the presence of 100μL-500μL of Aromatic Compound Cyclohexane and at different applied voltages.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] L. Vayssieres, K. Keis, A. Hagfeldt, and S.E. Linquist, Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes, Chem.Mater., 13 (2001) 4395-4398.

DOI: 10.1021/cm011160s

Google Scholar

[2] Y.J. Xing, Y. Song, S. L. Zhang, D. P. Yua, Optical properties of the ZnO nanotubes synthesized via vapor phase growth, Appl. Phy. Lett., 83 (2003) 1689.

DOI: 10.1063/1.1605808

Google Scholar

[3] Z. W. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of semiconducting oxides, Sci., 291(2001) 1947-(1949).

Google Scholar

[4] W. Z. Wang, B. Q. Zeng, J. Yang, B. Poudel, J. Y. Huang, Aligned Ultralong ZnO Nanobelts and Their Enhanced Field Emission, Adv. Mater., 18 (2006) 3275-3278.

DOI: 10.1002/adma.200601274

Google Scholar

[5] Y . Qiu, S. Y Ang, ZnO Nanotetrapods: Controlled Vapor‐Phase Synthesis and Application for Humidity Sensing, Adv. Func. Mater., 17 (2007) 1345-1352.

DOI: 10.1002/adfm.200601128

Google Scholar

[6] X. Fan, M. L. Zhang, I. Shafiq, W. J. Zhang, ZnS/ZnO heterojunction nanoribbons, Adv. Mater., 21 (2009) 2393-2396.

DOI: 10.1002/adma.200802049

Google Scholar

[7] N. Boukos, C. Chandrinou, K. Giannakopoulos, G. Pistolis, A. Travlos, Growth of ZnO nanorods by a simple chemical method, Appl. Phy. A, 88 (2007) 35-9.

DOI: 10.1007/s00339-007-3940-x

Google Scholar

[8] P. Rai, S. K. Tripathy, Nam-Hee Park, Kwang-Joong O, In-Hwan Lee, Yeon-Tae Yu, Synthesis of violet light emitting single crystalline ZnO Nanorods by using CTAB-assisted hydrothermal method, J Mater Sci: Mate.r Electron., 20 (2009) 967–971.

DOI: 10.1007/s10854-008-9816-9

Google Scholar

[9] Y. Sun, G. M. Fuge and M. N. R. Ashfold, Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods, Chem. Phys. Lett., 396 (2004) 21-26.

DOI: 10.1016/j.cplett.2004.07.110

Google Scholar

[10] J.Wu and S. C. Liu, Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition, Adv. Mater., 14 (2002) 215-218.

DOI: 10.1002/1521-4095(20020205)14:3<215::aid-adma215>3.0.co;2-j

Google Scholar

[11] S. Xu, Z. L. Wang, One-Dimensional ZnO Nanostructures: Solution Growth and Functional Properties. Nano. Res., 4 (2011) 1013-1098.

DOI: 10.1007/s12274-011-0160-7

Google Scholar

[12] M. Wang, C. Xing, K. Cao, K, L. Meng, J. Liu, Alignment-Controlled Hydrothermal Growth of Well Aligned ZnO Nanorod Arrays. J. Phys. Chem. Solids., 75 (2014) 808–817.

DOI: 10.1016/j.jpcs.2014.02.011

Google Scholar

[13] V. Strano, V, R. G. Urso, R. G, M. Scuderi, K.O. Iwu, F. Simone, E. Ciliberto, C. Spinella, S. Mirabella, Double Role of HMTA in ZnO Nanorods Grown by Chemical Bath Deposition. J. Phys. Chem. C, 118 (2014) 28189-28195.

DOI: 10.1021/jp507496a

Google Scholar

[14] Y. Zhou, W. Wu, G. Hu, H. Wu, S. Cui, Hydrothermal synthesis of ZnO nanorod arrays with the addition of polyethyleneimine, Mat. Res. Bull., 43 (2008) 2113–2118.

DOI: 10.1016/j.materresbull.2007.09.024

Google Scholar

[15] X. Gao, X. Li, W. Yu, Flowerlike ZnO Nanostructures via Hexamethylenetetramine-Assisted Thermolysis of Zinc-Ethylenediamine Complex, J. Phys. Chem. B, 109 (2005) 1155-1161.

DOI: 10.1021/jp046267s

Google Scholar

[16] T.S. Senthil, A-Young Kim, N. Muthukumarasamy, M. Kang, Effect of bath temperature on the performance of ZnO nanorod-based thin film solar cells. J. Nanopart. Res., 15 (2013) 1926-(1932).

DOI: 10.1007/s11051-013-1926-5

Google Scholar

[17] Y. Qua, X. Huanga, Y. Lia, G.Lina, B. Guoa, D. Songb, Q. Chenga. Size Controllable of ZnO Nanorods on Si Substrates. Superlattic. Microstruct., 101 (2017) 469-479.

Google Scholar

[18] R. Parize, J. D. Garnier, O. Chaix- Pluchery, C. Verrier, E. Appert, and V. Consonni. Effects of HMTA on the Nucleation and Radial Growth of ZnO Nanowires by Chemical Bath Deposition., J. Phys. Chem. C., 27 (2016) 327-342.

DOI: 10.1021/acs.jpcc.6b00479

Google Scholar

[19] A. Sugunan, H.C. Warad, M. Boman, J. Dutta. Zinc Oxide Nanowires in Chemical Bath on Seeded Substrates: Role of Hexamine. J. Sol-Gel Sci. Techn., 39 (2016) 49–56.

DOI: 10.1007/s10971-006-6969-y

Google Scholar

[20] K. M. McPeak, T. P. Le, N. G. Britton, Z. S. Nickolov, Y. A. Elabd, J. B. Baxter, Chemical Bath Deposition of ZnO Nanowires at Near-Neutral pH Conditions Without Hexamethylenetetramine (HMTA): Understanding the Role of HMTA in ZnO Nanowire Growth, Langmuir, 27 (2011).

DOI: 10.1021/la105147u

Google Scholar