Efficient Polymer Scattering Layer Fabrication and their Application in Electrical Properties Enhancement of Perovskite/Silicon Tandem Solar Cells

Article Preview

Abstract:

Tandem Solar Cells with Silicon as one of its constituents have flat surfaces (surfaces without texturing). That is why flat surfaces Solar cells have got quite importance. But the issue with the flat surfaces is the high reflection loss (flat) and poor light trapping (no-texturing) in the cells. So, some scattering film, other than direct texturing, that is polydimethylsiloxane (PDMS) polymer with the texture is used. The optimized PDMS film here is the random pyramidal film because random pyramidal PDMS films have a drop of 56.6% in reflectance used on polished Silicon while iso-textured and inverted pyramids have 51.55% and 48.47% respectively. This PDMS film with random textures when applied to 2-terminal monolithic perovskite/Silicon tandem, its external quantum efficiency shows an increase of 1.12mA/cm2 in the short-circuit current and reflection loss reduces by 4.1 mA/cm2.

You have full access to the following eBook

Info:

[1] S. Chattopadhyay, Y.F. Huang, et al, Anti-reflecting and photonic nanostructures, Mater. Sci. Engineer., 69 (2010) 1–35.

Google Scholar

[2] C. Ballif, J. Dicker, et al, Solar glass with industrial porous SiO2 antireflection coating: measurements of photovoltaic module properties improvement and modeling of yearly energy yield gain, Sol. Ener. Mater. Sol. Cel., 82 (2004) 331–344.

DOI: 10.1016/j.solmat.2003.12.004

Google Scholar

[3] P.K. Chang, P.-T. Hsieh, et al, Improvement of the short-circuit current density and efficiency in micromorph tandem solar cells by an anti-reflection layer, Th. Sol. Fil., 520 (2011) 550–553.

DOI: 10.1016/j.tsf.2011.06.086

Google Scholar

[4] J.D. Hylton, et al, Alkaline etching for reflectance reduction in monocrystalline silicon solar cells, J. Electrochem. Soc., 151 (6) (2004) G408–G427.

DOI: 10.1149/1.1738137

Google Scholar

[5] K.R. McIntosh, T.G. Allen, et al, Light trapping in iso-textured silicon wafers, IEEE J. Photovolt. 7 (2017) 110–117.

Google Scholar

[6] S.Sivasubramaniam, M.M. Alkaisi, Inverted nanopyramid texturing for silicon solar cells using interference lithography, 2014, Published by Elsevier B.V. Microelectronic Engineering.

DOI: 10.1016/j.mee.2014.04.004

Google Scholar

[7] J.Y. Chen, K.W. Sun, Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer, Sol. Ener. Mater. Sol. Cel., 94 (2010) 629–633.

DOI: 10.1016/j.solmat.2009.11.028

Google Scholar

[8] J. Escarre, K. Söderström, et al, Geometric light trapping for high efficiency thin film silicon solar cells, Sol. Ener. Mater. Sol. Cel., 98 (2012) 185-190.

DOI: 10.1016/j.solmat.2011.10.031

Google Scholar

[9] M. Jošt, S. Albrecht, et al, Back-and Front-side Texturing for Light-management in Perovskite/Silicon heterojunction Tandem Solar Cells, Energ. Proced., 102 (2016) 43-48.

DOI: 10.1016/j.egypro.2016.11.316

Google Scholar

[10] C.J. Ting, M.C. Huang et al, Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology, Nanotechnol., 19(2008) 205301 (5pp).

DOI: 10.1088/0957-4484/19/20/205301

Google Scholar

[11] J. K. Tsai and Y. S. Tu, Fabrication of Polymeric Antireflection Film Manufactured by Anodic Aluminum Oxide Template on Dye-Sensitized Solar Cells, Mater., 10 (2017) 296-302.

DOI: 10.3390/ma10030296

Google Scholar

[12] W. Jaegermann, A. Klein, T. Mayer, Interface engineering of inorganic thin‐film solar cells–materials‐science challenges for advanced physical concepts, Adv. Mater. 21 (2009) 4196–4206.

DOI: 10.1002/adma.200802457

Google Scholar

[13] A.R. Pascoe, S. Meyer, et al, Enhancing the optoelectronic performance of perovskite solar cells via a textured CH3NH3PbI3 morphology, Adv. Funct. Mater. 26 (2015) 1278–1285.

DOI: 10.1002/adfm.201504190

Google Scholar

[14] J. Fritsche, S. Gunst, et al, Surface analysis of CdTe thin film solar cells, Th. Sol. Fil., 387 (2001) 161–164.

Google Scholar

[15] M. Umeno, et al, Hetero-epitaxial technologies on Si for high-efficiency solar cells, Sol. Energy Mater. Sol. Cel., 50 (1998) 203–212.

Google Scholar

[16] K.A. Bush , A.F. Palmstrom , Z.J. Yu et al, 23.6% efficient monolithic perovskite/silicon tandem solar cells with improved stability, Nat. Energ., 2 (2017) 17009.

Google Scholar

[17] S. Albrecht, M. Saliba, J.P.C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, Monolithic perovskite/silicon-heterojunction tandemsolar cells processed at low temperature, Energ. Environ. Sci., 9 (2016) 81–88.

DOI: 10.1039/c5ee02965a

Google Scholar

[18] X. Wang, A. Barnett, The effect of spectrum variation on the energy production of triple-junction solar cells, IEEE J. Photovolt., 2 (2012) 417–423.

DOI: 10.1109/jphotov.2012.2199081

Google Scholar

[19] M. Jošt, S. Albrecht, B. Lipovšek, J. Krč, L. Korte, B.Rech, and M. Topič, Back-and Front-side Texturing for Light-management in Perovskite/Silicon heterojunction Tandem Solar Cells, Energ. Proced., 102 (2016) 43-48.

DOI: 10.1016/j.egypro.2016.11.316

Google Scholar

[20] J. Escarre, K. Soederstroem et al, Highfidelity transfer of nanometric random textures by UV embossing for thin film solar cells applications. Sol. Ener. Mater. Sol. Cel., 95 (2011) 881–886.

DOI: 10.1016/j.solmat.2010.11.010

Google Scholar

[21] MS Thesis, Light Trapping in Monocrystalline Silicon Solar Cells Using Random Upright Pyramids by S. Manzoor at Arizona State University, USA, (2014).

Google Scholar

[22] S. Manzoor, J. Yu Zhengshan, A. Ali et al, Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer, Sol. Ener. Mater. Sol. Cel., 173 (2017) 59–65.

DOI: 10.1016/j.solmat.2017.06.020

Google Scholar