[1]
L. Bai, W. Xue, Y. Li, X. Liu, Y. Li, J. Sun, The interfacial behaviours of all-solid-state lithium ion batteries, Ceram. Int. 44 (2018) 7319-7328.
DOI: 10.1016/j.ceramint.2018.01.190
Google Scholar
[2]
M. A. Hannan, M. M. Hoque, A. Mohamed, A. Ayob, Review of energy storage systems for electric vehicle applications: Issues and challenges, Renew. Sustain. Energ. Rev. 69 (2017) 771-789.
DOI: 10.1016/j.rser.2016.11.171
Google Scholar
[3]
A. K. Shukla, T. P. Kumar, Materials for Next-Generation Lithium Batteries, Curr. Sci. 94 (2008) 314-331.
Google Scholar
[4]
J. Zhu, T. Wierzbicki, W. Li, A review of safety-focused mechanical modeling of commercial lithium-ion batteries, J. Power Sources 378 (2018) 153-168.
DOI: 10.1016/j.jpowsour.2017.12.034
Google Scholar
[5]
Y. Lu, L. Yu, X. W. Lou, Nanostructured Conversion-type Anode Materials for Advanced Lithium-Ion Batteries, Chem 4 (2018) 972-996.
DOI: 10.1016/j.chempr.2018.01.003
Google Scholar
[6]
R. Hausbrand, D. Becker, W. Jaegermann, A surface science approach to cathode/electrolyte interfaces in Li-ion batteries: Contact properties, charge transfer and reactions, Prog. Solid State Chem. 42 (2014) 175-183.
DOI: 10.1016/j.progsolidstchem.2014.04.010
Google Scholar
[7]
X. Yang, L. Shen, B. Wu, Z. Zuo, D. Mu, B. Wu, H. Zhou, Improvement of the cycling performance of LiCoO2 with assistance of cross-linked PAN for lithium ion batteries, J. Alloys Compd. 639 (2015) 458-464.
DOI: 10.1016/j.jallcom.2015.03.153
Google Scholar
[8]
J. W. Fergus, Recent developments in cathode materials for lithium ion batteries, J. Power Sources 195 (2010) 939-954.
DOI: 10.1016/j.jpowsour.2009.08.089
Google Scholar
[9]
H. Porthault, F. Le Cras, S. Franger, Synthesis of LiCoO2 thin films by sol/gel process, J. Power Sources 195 (2010) 6262-6267.
DOI: 10.1016/j.jpowsour.2010.04.058
Google Scholar
[10]
T. A. Hewston, B. L. Chamberland, A survey of first-row ternary oxides LiMO2 (M = Sc-Cu), J. Phys. Chem. Solids 48 (1987) 97-108.
DOI: 10.1016/0022-3697(87)90076-x
Google Scholar
[11]
H. Nara, K. Morita, T. Yokoshima, D. Mukoyama, T. Momma, T. Osaka, Electrochemical impedance spectroscopy analysis with a symmetric cell for LiCoO2 cathode degradation correlated with Co dissolution, Mate. Sci. 3 (2016) 448-459.
DOI: 10.3934/matersci.2016.2.448
Google Scholar
[12]
D. I. Stroe, M. Swierczynski, S. R. K. Kær, R. Teodorescu, A comprehensive study on the degradation of lithium-ion batteries during calendar ageing: The internal resistance increase, Energy Conversion Congress and Exposition, Milwaukee USA, Energy Conversion Congress and Exposition, 2016 IEEE, pp.1-7.
DOI: 10.1109/ecce.2016.7854664
Google Scholar
[13]
Y. Kobayashi, M. Tabuchi, H. Miyashiro, N. Kuriyama, A new design of highly reversible LiNiO2: Defect formation in transition metal site, J. Power Sources 364 (2017) 156-162.
DOI: 10.1016/j.jpowsour.2017.08.027
Google Scholar
[14]
Y. Uchimoto, H. Sawada, T. Yao, Changes in electronic structure by Li ion deintercalation in LiNiO2 from nickel L-edge and O K-edge XANES, J. Power Sources 97 (2001) 326-327.
DOI: 10.1016/s0378-7753(01)00624-3
Google Scholar
[15]
F. Kong, C. Liang, R. C. Longo, Y. Zheng, K. Cho, Atomic-scale understanding of non-stoichiometry effects on the electrochemical performance of Ni-rich cathode materials, J. Power Sources 378 (2018) 750-758.
DOI: 10.1016/j.jpowsour.2018.01.008
Google Scholar
[16]
H. Xiao, Y. Wang, K. Xie, S. Cheng, X. Cheng, High capacitance LiMn2O4 microspheres with different microstructures as cathode material for aqueous asymmetric supercapacitors, J. Alloys Compd. 738 (2018) 25-31.
DOI: 10.1016/j.jallcom.2017.12.143
Google Scholar
[17]
K. Hariprasad, N. Naresh, B. Nageswara Rao, M. Venkateswarlu, N. Satyanarayana, Preparation of LiMn2O4 Nanorods and Nanoparticles for Lithium-ion Battery Applications, Mater. Today:. Proc. 3 (2016) 4040-4045.
DOI: 10.1016/j.matpr.2016.11.070
Google Scholar
[18]
P. Ram, R. Singhal, R. Kumar Sharma, Preliminary study of dysprosium doped LiMn2O4 spinel cathode materials, Mater. Today:. Proc. 4 (2017) 9365-9370.
DOI: 10.1016/j.matpr.2017.06.186
Google Scholar
[19]
J. Liu, A. Manthiram, Understanding the Improvement in the Electrochemical Properties of Surface Modified 5V LiMn1. 42Ni0. 42Co0. 16O4 Spinel Cathodes in Lithium-ion Cells, Chem. Mater. 21 (2009) 1695-1707.
DOI: 10.1021/cm9000043
Google Scholar
[20]
A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, J. B. Goodenough, Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates, J. Electrochem. Soc. 144 (1997) 1609-1613.
DOI: 10.1149/1.1837649
Google Scholar
[21]
S. K. Martha, H. Sclar, Z. S. Framowitz, D. Kovacheva, N. Saliyski, Y. Gofer, P. Sharon, E. Golik, B. Markovsky, D. Aurbach, A comparative study of electrodes comprising nanometric and submicron particles of LiNi0. 50Mn0. 50O2, LiNi0. 33Mn0. 33Co0. 33O2, and LiNi0. 40Mn0. 40Co0. 20O2 layered compounds, J. Power Sources 189 (2009).
DOI: 10.1016/j.jpowsour.2008.09.090
Google Scholar
[22]
C. Zhao, L. N. Wang, H. Wu, J. Chen, M. Gao, Ultrafast fabrication of LiFePO4 with high capacity and superior rate cycling performance for lithium ion batteries, Mater. Res. Bull. 97 (2018) 195-200.
DOI: 10.1016/j.materresbull.2017.08.059
Google Scholar
[23]
A. V. Murugan, T. Muraliganth, A. Manthiram, One-Pot Microwave-Hydrothermal Synthesis and Characterization of Carbon-Coated LiMPO4 (M=Mn, Fe, and Co) Cathodes, Superlattices Microstruct. 156(2) (2009) 76-88.
DOI: 10.1149/1.3028304
Google Scholar
[24]
J. Wang, Z. Wang, X. Li, H. Guo, X. Wu, X. Zhang, W. Xiao, xLi3V2(PO4)3·LiVPO4F/C composite cathode materials for lithium ion batteries, Electrochim. Acta 87 (2013) 224-229.
DOI: 10.1016/j.electacta.2012.09.014
Google Scholar
[25]
D. Li, H. Zhang, C. Wang, D. Song, X. Shi, L. Zhang, New structurally integrated layered-spinel lithium-cobalt-manganese-oxide composite cathode materials for lithium-ion batteries, J. Alloys Compd. 696 (2017) 276-289.
DOI: 10.1016/j.jallcom.2016.11.246
Google Scholar
[26]
S. Vedala, M. Sushama, Urea Assisted Combustion Synthesis of LiFePO4/C Nano composite Cathode Material for Lithium Ion Battery Storage System, Mater. Today:. Proc. 5 (2018) 1649-1656.
DOI: 10.1016/j.matpr.2017.11.259
Google Scholar
[27]
J. Lu, Y. Zhou, T. Jiang, X. Tian, X. Tu, P. Wang, Synthesis and optimization of three-dimensional lamellar LiFePO4 and nanocarbon composite cathode materials by polyol process, Ceram. Int. 42 (2016) 1281-1292.
DOI: 10.1016/j.ceramint.2015.09.063
Google Scholar
[28]
Y. F. Deng, S. X. Zhao, Y. H. Xu, C. W. Nan, Electrochemical performance of layer–spinel composite cathode materials at elevated temperature and high rate, Appl. Surf. Sci. 351 (2015) 209-215.
DOI: 10.1016/j.apsusc.2015.05.132
Google Scholar
[29]
N. V. Kosova, Mechanochemical Reactions and Processing of Nanostructured Electrode Materials for Lithium-ion Batteries, Mater. Today:. Proc. 3 (2016) 391-395.
DOI: 10.1016/j.matpr.2016.01.025
Google Scholar
[30]
Z. R. Chang, H. J. Lv, H. W. Tang, H. J. Li, X. Z. Yuan, H. Wang, Synthesis and characterization of high-density LiFePO4/C composites as cathode materials for lithium-ion batteries, Electrochim. Acta 54 (2009) 4595-4599.
DOI: 10.1016/j.electacta.2009.03.063
Google Scholar
[31]
Y. Z. Dong, Y. M. Zhao, Y. H. Chen, Z. F. He, Q. Kuang, Optimized carbon-coated LiFePO4 cathode material for lithium-ion batteries, Mater. Chem. Phys. 115 (2009) 245-250.
DOI: 10.1016/j.matchemphys.2008.11.063
Google Scholar
[32]
J. Liu, R. Jiang, X. Wang, T. Huang, A. Yu, The defect chemistry of LiFePO4 prepared by hydrothermal method at different pH values, J. Power Sources 194 (2009) 536-540.
DOI: 10.1016/j.jpowsour.2009.05.007
Google Scholar
[33]
H. Zhang, Liu Kaiyu, Sun Zhe, Chen Bin, Electrochemical Performance of LiFePO4 Prepared by Microwave Synthesis for Lion Battery, Chinese Batt. Ind. 17 (2012) 85-88.
Google Scholar
[34]
Y. Lin, M. X. Gao, D. Zhu, Y. F. Liu, H. G. Pan, Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C, J. Power Sources 184 (2008) 444-448.
DOI: 10.1016/j.jpowsour.2008.03.026
Google Scholar
[35]
B. Zhao, Y. Jiang, H. Zhang, H. Tao, M. Zhong, Z. Jiao, Morphology and electrical properties of carbon coated LiFePO4 cathode materials, J. Power Sources 189 (2009) 462-466.
DOI: 10.1016/j.jpowsour.2008.12.069
Google Scholar
[36]
Y. Zhao, D. Xia, Y. Li, C. Yu, Investigation of High-Rate Spherical LiCoO2 with Mesoporous Structure via Self-Assembly in Microemulsion, Electrochem. Solid-State Lett. 11 (2008) A30-A33.
DOI: 10.1149/1.2826706
Google Scholar
[37]
E. G. Shim, T. H. Nam, J. G. Kim, H. S. Kim, S. I. Moon, Diphenyloctyl phosphate as a flame-retardant additive in electrolyte for Li-ion batteries, J. Power Sources 175 (2008) 533-539.
DOI: 10.1016/j.jpowsour.2007.08.098
Google Scholar
[38]
W. Kim, J. J. Cho, Y. Kang, D. W. Kim, Study on cycling performances of lithium-ion polymer cells assembled by in situ chemical cross-linking with star-shaped siloxane acrylate, J. Power Sources 178 (2008) 837-841.
DOI: 10.1016/j.jpowsour.2007.07.050
Google Scholar
[39]
R. Thirunakaran, A. Sivashanmugam, S. Gopukumar, C. W. Dunnill, D. H. Gregory, Phthalic acid assisted nano-sized spinel LiMn2O4 and LiCrxMn2−xO4 (x = 0. 00-0. 40) via sol–gel synthesis and its electrochemical behaviour for use in Li-ion-batteries, Mater. Res. Bull. 43 (2008).
DOI: 10.1016/j.materresbull.2007.09.021
Google Scholar
[40]
S. H. Lim, J. Cho, PVP-Assisted ZrO2 coating on LiMn2O4 spinel cathode nanoparticles prepared by MnO2 nanowire templates, Electrochem. Commun. 10 (2014) 1478-1481.
DOI: 10.1016/j.elecom.2008.07.028
Google Scholar
[41]
T. Okumura, T. Fukutsuka, Y. Uchimoto, K. Amezawa, S. Kobayashi, Cathode having high rate performance for a secondary Li-ion cell surface-modified by aluminum oxide nanoparticles, J. Power Sources 189(1) (2009) 471-475.
DOI: 10.1016/j.jpowsour.2008.12.043
Google Scholar
[42]
J. Lu, C. Zhou, Z. Liu, K. S. Lee, L. Lu, LiMn2O4 cathode materials with large porous structure and radial interior channels for lithium ion batteries, Electrochim. Acta 212 (2016) 553-560.
DOI: 10.1016/j.electacta.2016.07.013
Google Scholar
[43]
G. L. Yang, A. F. Jalbout, Y. Xu, H. Y. Yu, X. G. He, H. M. Xie, R. S. Wang, Effect of Polyacenic Semiconductors on the Performance of Olivine LiFePO4, Electrochem. Solid-State Lett. 11(8) (2008).
DOI: 10.1149/1.2929067
Google Scholar
[44]
Y. Zhang, P. Xin, Q. Yao, Electrochemical performance of LiFePO4/C synthesized by sol-gel method as cathode for aqueous lithium ion batteries, J. Alloys Compd. 741 (2018) 404-408.
DOI: 10.1016/j.jallcom.2018.01.083
Google Scholar
[45]
W. Ji, L. Cai, Q. Men, G. Sun, X. Zhang, Build and Test Research of a Coaxial Hybrid-power Gas Engine Heat Pump System Based on LiFePO4 Battery, Procedia Eng. 146 (2016) 431-440.
DOI: 10.1016/j.proeng.2016.06.425
Google Scholar
[46]
P. Chen, H. Wu, S. Huang, Y. Zhang, Template synthesis and lithium storage performances of hollow spherical LiMn2O4 cathode materials, Ceram. Int. 42 (2016) 10498-10505.
DOI: 10.1016/j.ceramint.2016.03.081
Google Scholar
[47]
J. Gao, A. Manthiram, Eliminating the irreversible capacity loss of high capacity layered Li[Li0. 2Mn0. 54Ni0. 13Co0. 13]O2 cathode by blending with other lithium insertion hosts, J. Power Sources 191 (2009) 644-647.
DOI: 10.1016/j.jpowsour.2009.02.005
Google Scholar
[48]
Y. Idemoto, H. Sekine, K. Ui, N. Koura, Crystal structural change during charge-discharge process of LiMn1. 5Ni0. 5O4 as cathode material for 5V class lithium secondary battery, Solid State Ionics 176 (2005) 299-306.
DOI: 10.1016/j.ssi.2004.09.003
Google Scholar
[49]
Y. S. Lee, K. S. Lee, Y. K. Sun, Y. M. Lee, D. W. Kim, Effect of an organic additive on the cycling performance and thermal stability of lithium-ion cells assembled with carbon anode and LiNi1/3Co1/3Mn1/3O2 cathode, J. Power Sources 196 (2011).
DOI: 10.1016/j.jpowsour.2010.10.047
Google Scholar