On the Latest Development of some Typical Cathode Materials for Lithium Ion Battery

Article Preview

Abstract:

The lithium-ion battery is widely and increasingly used in many portable electronic devices and high-power systems in the modern society. Currently, it is significant to develop excellent cathode materials to meet stringent standards for batteries. In this paper, recent developments were reviewed for several typical cathode materials with high voltages and good capacities. These cathode materials referred to LiCoO2, LiNiO2, LiMn2O4, LiMPO4 (M=Fe, Mn, Co and Ni, et al), and their composites. The technical bottlenecks about the cathode material is required to be conquered. For instance, LiCoO2 and LiNiO2 have high coulombic capacity and good cycling characteristics, but are costly and exhibit poor thermal stability. Simultaneously, LiMn2O4 exhibit good thermal stability, high voltage and high rate capability, but have low capacity. Thus it is advantageous to produce a composite which shares the benefits of both materials. The composite cathode material is superior over any single electrode material because the former has more balanced performance, and therefore, is promising to manufacture the next generation of batteries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-143

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Bai, W. Xue, Y. Li, X. Liu, Y. Li, J. Sun, The interfacial behaviours of all-solid-state lithium ion batteries, Ceram. Int. 44 (2018) 7319-7328.

DOI: 10.1016/j.ceramint.2018.01.190

Google Scholar

[2] M. A. Hannan, M. M. Hoque, A. Mohamed, A. Ayob, Review of energy storage systems for electric vehicle applications: Issues and challenges, Renew. Sustain. Energ. Rev. 69 (2017) 771-789.

DOI: 10.1016/j.rser.2016.11.171

Google Scholar

[3] A. K. Shukla, T. P. Kumar, Materials for Next-Generation Lithium Batteries, Curr. Sci. 94 (2008) 314-331.

Google Scholar

[4] J. Zhu, T. Wierzbicki, W. Li, A review of safety-focused mechanical modeling of commercial lithium-ion batteries, J. Power Sources 378 (2018) 153-168.

DOI: 10.1016/j.jpowsour.2017.12.034

Google Scholar

[5] Y. Lu, L. Yu, X. W. Lou, Nanostructured Conversion-type Anode Materials for Advanced Lithium-Ion Batteries, Chem 4 (2018) 972-996.

DOI: 10.1016/j.chempr.2018.01.003

Google Scholar

[6] R. Hausbrand, D. Becker, W. Jaegermann, A surface science approach to cathode/electrolyte interfaces in Li-ion batteries: Contact properties, charge transfer and reactions, Prog. Solid State Chem. 42 (2014) 175-183.

DOI: 10.1016/j.progsolidstchem.2014.04.010

Google Scholar

[7] X. Yang, L. Shen, B. Wu, Z. Zuo, D. Mu, B. Wu, H. Zhou, Improvement of the cycling performance of LiCoO2 with assistance of cross-linked PAN for lithium ion batteries, J. Alloys Compd. 639 (2015) 458-464.

DOI: 10.1016/j.jallcom.2015.03.153

Google Scholar

[8] J. W. Fergus, Recent developments in cathode materials for lithium ion batteries, J. Power Sources 195 (2010) 939-954.

DOI: 10.1016/j.jpowsour.2009.08.089

Google Scholar

[9] H. Porthault, F. Le Cras, S. Franger, Synthesis of LiCoO2 thin films by sol/gel process, J. Power Sources 195 (2010) 6262-6267.

DOI: 10.1016/j.jpowsour.2010.04.058

Google Scholar

[10] T. A. Hewston, B. L. Chamberland, A survey of first-row ternary oxides LiMO2 (M = Sc-Cu), J. Phys. Chem. Solids 48 (1987) 97-108.

DOI: 10.1016/0022-3697(87)90076-x

Google Scholar

[11] H. Nara, K. Morita, T. Yokoshima, D. Mukoyama, T. Momma, T. Osaka, Electrochemical impedance spectroscopy analysis with a symmetric cell for LiCoO2 cathode degradation correlated with Co dissolution, Mate. Sci. 3 (2016) 448-459.

DOI: 10.3934/matersci.2016.2.448

Google Scholar

[12] D. I. Stroe, M. Swierczynski, S. R. K. Kær, R. Teodorescu, A comprehensive study on the degradation of lithium-ion batteries during calendar ageing: The internal resistance increase, Energy Conversion Congress and Exposition, Milwaukee USA, Energy Conversion Congress and Exposition, 2016 IEEE, pp.1-7.

DOI: 10.1109/ecce.2016.7854664

Google Scholar

[13] Y. Kobayashi, M. Tabuchi, H. Miyashiro, N. Kuriyama, A new design of highly reversible LiNiO2: Defect formation in transition metal site, J. Power Sources 364 (2017) 156-162.

DOI: 10.1016/j.jpowsour.2017.08.027

Google Scholar

[14] Y. Uchimoto, H. Sawada, T. Yao, Changes in electronic structure by Li ion deintercalation in LiNiO2 from nickel L-edge and O K-edge XANES, J. Power Sources 97 (2001) 326-327.

DOI: 10.1016/s0378-7753(01)00624-3

Google Scholar

[15] F. Kong, C. Liang, R. C. Longo, Y. Zheng, K. Cho, Atomic-scale understanding of non-stoichiometry effects on the electrochemical performance of Ni-rich cathode materials, J. Power Sources 378 (2018) 750-758.

DOI: 10.1016/j.jpowsour.2018.01.008

Google Scholar

[16] H. Xiao, Y. Wang, K. Xie, S. Cheng, X. Cheng, High capacitance LiMn2O4 microspheres with different microstructures as cathode material for aqueous asymmetric supercapacitors, J. Alloys Compd. 738 (2018) 25-31.

DOI: 10.1016/j.jallcom.2017.12.143

Google Scholar

[17] K. Hariprasad, N. Naresh, B. Nageswara Rao, M. Venkateswarlu, N. Satyanarayana, Preparation of LiMn2O4 Nanorods and Nanoparticles for Lithium-ion Battery Applications, Mater. Today:. Proc. 3 (2016) 4040-4045.

DOI: 10.1016/j.matpr.2016.11.070

Google Scholar

[18] P. Ram, R. Singhal, R. Kumar Sharma, Preliminary study of dysprosium doped LiMn2O4 spinel cathode materials, Mater. Today:. Proc. 4 (2017) 9365-9370.

DOI: 10.1016/j.matpr.2017.06.186

Google Scholar

[19] J. Liu, A. Manthiram, Understanding the Improvement in the Electrochemical Properties of Surface Modified 5V LiMn1. 42Ni0. 42Co0. 16O4 Spinel Cathodes in Lithium-ion Cells, Chem. Mater. 21 (2009) 1695-1707.

DOI: 10.1021/cm9000043

Google Scholar

[20] A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, J. B. Goodenough, Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates, J. Electrochem. Soc. 144 (1997) 1609-1613.

DOI: 10.1149/1.1837649

Google Scholar

[21] S. K. Martha, H. Sclar, Z. S. Framowitz, D. Kovacheva, N. Saliyski, Y. Gofer, P. Sharon, E. Golik, B. Markovsky, D. Aurbach, A comparative study of electrodes comprising nanometric and submicron particles of LiNi0. 50Mn0. 50O2, LiNi0. 33Mn0. 33Co0. 33O2, and LiNi0. 40Mn0. 40Co0. 20O2 layered compounds, J. Power Sources 189 (2009).

DOI: 10.1016/j.jpowsour.2008.09.090

Google Scholar

[22] C. Zhao, L. N. Wang, H. Wu, J. Chen, M. Gao, Ultrafast fabrication of LiFePO4 with high capacity and superior rate cycling performance for lithium ion batteries, Mater. Res. Bull. 97 (2018) 195-200.

DOI: 10.1016/j.materresbull.2017.08.059

Google Scholar

[23] A. V. Murugan, T. Muraliganth, A. Manthiram, One-Pot Microwave-Hydrothermal Synthesis and Characterization of Carbon-Coated LiMPO4 (M=Mn, Fe, and Co) Cathodes, Superlattices Microstruct. 156(2) (2009) 76-88.

DOI: 10.1149/1.3028304

Google Scholar

[24] J. Wang, Z. Wang, X. Li, H. Guo, X. Wu, X. Zhang, W. Xiao, xLi3V2(PO4)3·LiVPO4F/C composite cathode materials for lithium ion batteries, Electrochim. Acta 87 (2013) 224-229.

DOI: 10.1016/j.electacta.2012.09.014

Google Scholar

[25] D. Li, H. Zhang, C. Wang, D. Song, X. Shi, L. Zhang, New structurally integrated layered-spinel lithium-cobalt-manganese-oxide composite cathode materials for lithium-ion batteries, J. Alloys Compd. 696 (2017) 276-289.

DOI: 10.1016/j.jallcom.2016.11.246

Google Scholar

[26] S. Vedala, M. Sushama, Urea Assisted Combustion Synthesis of LiFePO4/C Nano composite Cathode Material for Lithium Ion Battery Storage System, Mater. Today:. Proc. 5 (2018) 1649-1656.

DOI: 10.1016/j.matpr.2017.11.259

Google Scholar

[27] J. Lu, Y. Zhou, T. Jiang, X. Tian, X. Tu, P. Wang, Synthesis and optimization of three-dimensional lamellar LiFePO4 and nanocarbon composite cathode materials by polyol process, Ceram. Int. 42 (2016) 1281-1292.

DOI: 10.1016/j.ceramint.2015.09.063

Google Scholar

[28] Y. F. Deng, S. X. Zhao, Y. H. Xu, C. W. Nan, Electrochemical performance of layer–spinel composite cathode materials at elevated temperature and high rate, Appl. Surf. Sci. 351 (2015) 209-215.

DOI: 10.1016/j.apsusc.2015.05.132

Google Scholar

[29] N. V. Kosova, Mechanochemical Reactions and Processing of Nanostructured Electrode Materials for Lithium-ion Batteries, Mater. Today:. Proc. 3 (2016) 391-395.

DOI: 10.1016/j.matpr.2016.01.025

Google Scholar

[30] Z. R. Chang, H. J. Lv, H. W. Tang, H. J. Li, X. Z. Yuan, H. Wang, Synthesis and characterization of high-density LiFePO4/C composites as cathode materials for lithium-ion batteries, Electrochim. Acta 54 (2009) 4595-4599.

DOI: 10.1016/j.electacta.2009.03.063

Google Scholar

[31] Y. Z. Dong, Y. M. Zhao, Y. H. Chen, Z. F. He, Q. Kuang, Optimized carbon-coated LiFePO4 cathode material for lithium-ion batteries, Mater. Chem. Phys. 115 (2009) 245-250.

DOI: 10.1016/j.matchemphys.2008.11.063

Google Scholar

[32] J. Liu, R. Jiang, X. Wang, T. Huang, A. Yu, The defect chemistry of LiFePO4 prepared by hydrothermal method at different pH values, J. Power Sources 194 (2009) 536-540.

DOI: 10.1016/j.jpowsour.2009.05.007

Google Scholar

[33] H. Zhang, Liu Kaiyu, Sun Zhe, Chen Bin, Electrochemical Performance of LiFePO4 Prepared by Microwave Synthesis for Lion Battery, Chinese Batt. Ind. 17 (2012) 85-88.

Google Scholar

[34] Y. Lin, M. X. Gao, D. Zhu, Y. F. Liu, H. G. Pan, Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C, J. Power Sources 184 (2008) 444-448.

DOI: 10.1016/j.jpowsour.2008.03.026

Google Scholar

[35] B. Zhao, Y. Jiang, H. Zhang, H. Tao, M. Zhong, Z. Jiao, Morphology and electrical properties of carbon coated LiFePO4 cathode materials, J. Power Sources 189 (2009) 462-466.

DOI: 10.1016/j.jpowsour.2008.12.069

Google Scholar

[36] Y. Zhao, D. Xia, Y. Li, C. Yu, Investigation of High-Rate Spherical LiCoO2 with Mesoporous Structure via Self-Assembly in Microemulsion, Electrochem. Solid-State Lett. 11 (2008) A30-A33.

DOI: 10.1149/1.2826706

Google Scholar

[37] E. G. Shim, T. H. Nam, J. G. Kim, H. S. Kim, S. I. Moon, Diphenyloctyl phosphate as a flame-retardant additive in electrolyte for Li-ion batteries, J. Power Sources 175 (2008) 533-539.

DOI: 10.1016/j.jpowsour.2007.08.098

Google Scholar

[38] W. Kim, J. J. Cho, Y. Kang, D. W. Kim, Study on cycling performances of lithium-ion polymer cells assembled by in situ chemical cross-linking with star-shaped siloxane acrylate, J. Power Sources 178 (2008) 837-841.

DOI: 10.1016/j.jpowsour.2007.07.050

Google Scholar

[39] R. Thirunakaran, A. Sivashanmugam, S. Gopukumar, C. W. Dunnill, D. H. Gregory, Phthalic acid assisted nano-sized spinel LiMn2O4 and LiCrxMn2−xO4 (x = 0. 00-0. 40) via sol–gel synthesis and its electrochemical behaviour for use in Li-ion-batteries, Mater. Res. Bull. 43 (2008).

DOI: 10.1016/j.materresbull.2007.09.021

Google Scholar

[40] S. H. Lim, J. Cho, PVP-Assisted ZrO2 coating on LiMn2O4 spinel cathode nanoparticles prepared by MnO2 nanowire templates, Electrochem. Commun. 10 (2014) 1478-1481.

DOI: 10.1016/j.elecom.2008.07.028

Google Scholar

[41] T. Okumura, T. Fukutsuka, Y. Uchimoto, K. Amezawa, S. Kobayashi, Cathode having high rate performance for a secondary Li-ion cell surface-modified by aluminum oxide nanoparticles, J. Power Sources 189(1) (2009) 471-475.

DOI: 10.1016/j.jpowsour.2008.12.043

Google Scholar

[42] J. Lu, C. Zhou, Z. Liu, K. S. Lee, L. Lu, LiMn2O4 cathode materials with large porous structure and radial interior channels for lithium ion batteries, Electrochim. Acta 212 (2016) 553-560.

DOI: 10.1016/j.electacta.2016.07.013

Google Scholar

[43] G. L. Yang, A. F. Jalbout, Y. Xu, H. Y. Yu, X. G. He, H. M. Xie, R. S. Wang, Effect of Polyacenic Semiconductors on the Performance of Olivine LiFePO4, Electrochem. Solid-State Lett. 11(8) (2008).

DOI: 10.1149/1.2929067

Google Scholar

[44] Y. Zhang, P. Xin, Q. Yao, Electrochemical performance of LiFePO4/C synthesized by sol-gel method as cathode for aqueous lithium ion batteries, J. Alloys Compd. 741 (2018) 404-408.

DOI: 10.1016/j.jallcom.2018.01.083

Google Scholar

[45] W. Ji, L. Cai, Q. Men, G. Sun, X. Zhang, Build and Test Research of a Coaxial Hybrid-power Gas Engine Heat Pump System Based on LiFePO4 Battery, Procedia Eng. 146 (2016) 431-440.

DOI: 10.1016/j.proeng.2016.06.425

Google Scholar

[46] P. Chen, H. Wu, S. Huang, Y. Zhang, Template synthesis and lithium storage performances of hollow spherical LiMn2O4 cathode materials, Ceram. Int. 42 (2016) 10498-10505.

DOI: 10.1016/j.ceramint.2016.03.081

Google Scholar

[47] J. Gao, A. Manthiram, Eliminating the irreversible capacity loss of high capacity layered Li[Li0. 2Mn0. 54Ni0. 13Co0. 13]O2 cathode by blending with other lithium insertion hosts, J. Power Sources 191 (2009) 644-647.

DOI: 10.1016/j.jpowsour.2009.02.005

Google Scholar

[48] Y. Idemoto, H. Sekine, K. Ui, N. Koura, Crystal structural change during charge-discharge process of LiMn1. 5Ni0. 5O4 as cathode material for 5V class lithium secondary battery, Solid State Ionics 176 (2005) 299-306.

DOI: 10.1016/j.ssi.2004.09.003

Google Scholar

[49] Y. S. Lee, K. S. Lee, Y. K. Sun, Y. M. Lee, D. W. Kim, Effect of an organic additive on the cycling performance and thermal stability of lithium-ion cells assembled with carbon anode and LiNi1/3Co1/3Mn1/3O2 cathode, J. Power Sources 196 (2011).

DOI: 10.1016/j.jpowsour.2010.10.047

Google Scholar