[1]
J. Wang, H. C. Huang, et al, Growth of Y-shaped nanorods through physical vapor deposition, Nano Lett. 5 (2005) 2505–2508.
DOI: 10.1021/nl0518425
Google Scholar
[2]
C. M. Zhou, D. Gall, Two component nanorod arrays by glancing angle deposition, Small. 4 (2008) 1351–1354.
DOI: 10.1002/smll.200701289
Google Scholar
[3]
S. V. Kesapragada, P. Victor, et al, Nanospring pressure sensors grown by glancing angle deposition, Nano Lett. 6 (2006) 854–857.
DOI: 10.1021/nl060122a
Google Scholar
[4]
P. I. Wang, S. H. Lee, et al. Low temperature wafer bonding by copper nanorod array, Electrochem. Solid-State Lett. 12 (2009) H138-H141.
DOI: 10.1149/1.3075900
Google Scholar
[5]
S. Shanmukh, L. Jones, et al. Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate, Nano Lett. 6 (2006) 2630–2636.
DOI: 10.1021/nl061666f
Google Scholar
[6]
S. B. Chaney, S. Shanmukh, et al. Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates, Appl. Phys. Lett. 87 (2005) 031908.
DOI: 10.1063/1.1988980
Google Scholar
[7]
S. P. Stagon and H. C. Huang, Airtight metallic sealing at room temperature under small mechanical pressure, Sci. Rep. 3 (2013) 3066.
DOI: 10.1038/srep03066
Google Scholar
[8]
G. Ehrlich, F. G. Hudda, Atomic View of Surface Self-Diffusion: Tungsten on Tungsten, J. Che. Phys. 44 (1966) 1039-1049.
DOI: 10.1063/1.1726787
Google Scholar
[9]
R. L. Schwoebel, E. J. Shipsey, Step Motion on Crystal Surfaces, J. Appl. Phys. 37 (1966) 3682-3686.
DOI: 10.1063/1.1707904
Google Scholar
[10]
S. J. Liu, H. Huang, et al. Schwoebel-Ehrlich barrier: from two to three dimensions. Appl. Phys. Lett. 80 (2002) 3295-3297.
DOI: 10.1063/1.1475774
Google Scholar
[11]
M. G. Lagally, Z. Zhang, Materials science: Thin-film cliffhanger, Nature, 417 (2002) 907-910.
DOI: 10.1038/417907a
Google Scholar
[12]
J. Wang, H. Huang, et al. Diffusion barriers on Cu surfaces and near steps, Modell. Simul. Mater. Sci. Eng. 12 (2004) 1209-1225.
DOI: 10.1088/0965-0393/12/6/014
Google Scholar
[13]
H. C. Huang, G. H. Gilmer, et al. An atomistic simulator for thin film deposition in three dimensions, J. Appl. Phys. 84 (1998) 3636-3649.
DOI: 10.1063/1.368539
Google Scholar
[14]
P. Wu, H. J. Jiang, et al. Lattice mismatch induced nonlinear growth of grapheme, J. Am. Chem. Soc. 134 (2012) 6045–6051.
Google Scholar
[15]
X. B. Niu, G. B. Stringfellow, et al. Simulation of self-assembled compositional core-shell structures in InxGa1−xN nanowires, Phys. Rev. B 85 (2012) 165316.
Google Scholar
[16]
J. A. Venables, Introduction to Surface and Thin Film Processes, Cambridge University Press, Cambridge (2000).
Google Scholar
[17]
D. Walton, Nucleation of Vapor Deposits, J. Chem. Phys., 37 (1962) 2182.
Google Scholar
[18]
J. Krug, Four lectures on the physics of crystal growth, Phys. A (Amsterdam, Neth.) 313 (2002) 47-82.
Google Scholar
[19]
S. K. Xiang and H. Huang, Ab initio determination of Ehrlich–Schwoebel barriers on Cu{111}, Appl. Phys. Lett. 92 (2008) 101923.
DOI: 10.1063/1.2891106
Google Scholar
[20]
G. C. Kallinteris, G. A. Evangelakis, N. I. Papanicolaou, Molecular dynamics study of the vibrational and transport properties of copper adatoms on the (111) copper surface; comparison with the (001) face, Surf. Sci. 369 (1996) 185.
DOI: 10.1016/s0039-6028(96)00920-x
Google Scholar