Three-Dimensional ES Barrier Promotes the Steps Formation

Article Preview

Abstract:

Physical vapor deposition (PVD) has been an important method to synthesize metallic nanorods during the past two decades. Based on the main physical process of crystal growth, this letter made a growth model of metallic nanorods with kinetic lattice Monte Carlo (KLMC) method and studied the effects of three-dimensional (3D) Ehrlich–Schwoebel (ES) barrier during the metallic nanorods growth. According to the simulation results, a large 3D ES barrier affects the surface morphology apparently. With analyze the simulation results, 3D ES barrier promotes the step formation and increases the step height greatly, and it is the main factor of metallic nanorods formation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-119

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wang, H. C. Huang, et al, Growth of Y-shaped nanorods through physical vapor deposition, Nano Lett. 5 (2005) 2505–2508.

DOI: 10.1021/nl0518425

Google Scholar

[2] C. M. Zhou, D. Gall, Two component nanorod arrays by glancing angle deposition, Small. 4 (2008) 1351–1354.

DOI: 10.1002/smll.200701289

Google Scholar

[3] S. V. Kesapragada, P. Victor, et al, Nanospring pressure sensors grown by glancing angle deposition, Nano Lett. 6 (2006) 854–857.

DOI: 10.1021/nl060122a

Google Scholar

[4] P. I. Wang, S. H. Lee, et al. Low temperature wafer bonding by copper nanorod array, Electrochem. Solid-State Lett. 12 (2009) H138-H141.

DOI: 10.1149/1.3075900

Google Scholar

[5] S. Shanmukh, L. Jones, et al. Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate, Nano Lett. 6 (2006) 2630–2636.

DOI: 10.1021/nl061666f

Google Scholar

[6] S. B. Chaney, S. Shanmukh, et al. Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates, Appl. Phys. Lett. 87 (2005) 031908.

DOI: 10.1063/1.1988980

Google Scholar

[7] S. P. Stagon and H. C. Huang, Airtight metallic sealing at room temperature under small mechanical pressure, Sci. Rep. 3 (2013) 3066.

DOI: 10.1038/srep03066

Google Scholar

[8] G. Ehrlich, F. G. Hudda, Atomic View of Surface Self-Diffusion: Tungsten on Tungsten, J. Che. Phys. 44 (1966) 1039-1049.

DOI: 10.1063/1.1726787

Google Scholar

[9] R. L. Schwoebel, E. J. Shipsey, Step Motion on Crystal Surfaces, J. Appl. Phys. 37 (1966) 3682-3686.

DOI: 10.1063/1.1707904

Google Scholar

[10] S. J. Liu, H. Huang, et al. Schwoebel-Ehrlich barrier: from two to three dimensions. Appl. Phys. Lett. 80 (2002) 3295-3297.

DOI: 10.1063/1.1475774

Google Scholar

[11] M. G. Lagally, Z. Zhang, Materials science: Thin-film cliffhanger, Nature, 417 (2002) 907-910.

DOI: 10.1038/417907a

Google Scholar

[12] J. Wang, H. Huang, et al. Diffusion barriers on Cu surfaces and near steps, Modell. Simul. Mater. Sci. Eng. 12 (2004) 1209-1225.

DOI: 10.1088/0965-0393/12/6/014

Google Scholar

[13] H. C. Huang, G. H. Gilmer, et al. An atomistic simulator for thin film deposition in three dimensions, J. Appl. Phys. 84 (1998) 3636-3649.

DOI: 10.1063/1.368539

Google Scholar

[14] P. Wu, H. J. Jiang, et al. Lattice mismatch induced nonlinear growth of grapheme, J. Am. Chem. Soc. 134 (2012) 6045–6051.

Google Scholar

[15] X. B. Niu, G. B. Stringfellow, et al. Simulation of self-assembled compositional core-shell structures in InxGa1−xN nanowires, Phys. Rev. B 85 (2012) 165316.

Google Scholar

[16] J. A. Venables, Introduction to Surface and Thin Film Processes, Cambridge University Press, Cambridge (2000).

Google Scholar

[17] D. Walton, Nucleation of Vapor Deposits, J. Chem. Phys., 37 (1962) 2182.

Google Scholar

[18] J. Krug, Four lectures on the physics of crystal growth, Phys. A (Amsterdam, Neth.) 313 (2002) 47-82.

Google Scholar

[19] S. K. Xiang and H. Huang, Ab initio determination of Ehrlich–Schwoebel barriers on Cu{111}, Appl. Phys. Lett. 92 (2008) 101923.

DOI: 10.1063/1.2891106

Google Scholar

[20] G. C. Kallinteris, G. A. Evangelakis, N. I. Papanicolaou, Molecular dynamics study of the vibrational and transport properties of copper adatoms on the (111) copper surface; comparison with the (001) face, Surf. Sci. 369 (1996) 185.

DOI: 10.1016/s0039-6028(96)00920-x

Google Scholar