[1]
A.J. Nozik, Quantum dot solar cells, 14 (2002) 115–120.
Google Scholar
[2]
S. Rühle, M. Shalom, A. Zaban, Quantum-dot-sensitized solar cells., Chemphyschem. 11 (2010) 2290–2304.
DOI: 10.1002/cphc.201000069
Google Scholar
[3]
P. V. Kamat, Quantum dot solar cells. The next big thing in photovoltaics, J. Phys. Chem. Lett. 4 (2013) 908–918.
DOI: 10.1021/jz400052e
Google Scholar
[4]
I. Hwang, K. Yong, Counter Electrodes for Quantum-Dot-Sensitized Solar Cells, ChemElectroChem. 2 (2015) 634–653.
DOI: 10.1002/celc.201402405
Google Scholar
[5]
K. Meng, G. Chen, K.R. Thampi, Metal chalcogenides as counter electrode materials in quantum dot sensitized solar cells: a perspective, J. Mater. Chem. A. 3 (2015) 23074–23089.
DOI: 10.1039/c5ta05071e
Google Scholar
[6]
V.-D. Dao, Y. Choi, K. Yong, L.L. Larina, H.-S. Choi, Graphene-based nanohybrid materials as the counter electrode for highly efficient quantum-dot-sensitized solar cells, Carbon N. Y. 84 (2015) 383–389.
DOI: 10.1016/j.carbon.2014.12.014
Google Scholar
[7]
Q. Zhang, Y. Zhang, S. Huang, X. Huang, Y. Luo, Q. Meng, D. Li, Application of carbon counter electrode on CdS quantum dot-sensitized solar cells (QDSSCs), Electrochem. Commun. 12 (2010) 327–330.
DOI: 10.1016/j.elecom.2009.12.032
Google Scholar
[8]
G.S. Paul, J.H. Kim, M.S. Kim, K. Do, J. Ko, J.S. Yu, Different hierarchical nanostructured carbons as counter electrodes for Cds quantum dot solar cells, ACS Appl. Mater. Interfaces. 4 (2012) 375–381.
DOI: 10.1021/am201452s
Google Scholar
[9]
J. Selvaraj, S. Gupta, S. Delacruz, V. Subramanian, Role of reduced graphene oxide in the critical components of a CdS-sensitized TiO2-based photoelectrochemical cell, ChemPhysChem. 15 (2014) 2010–2018.
DOI: 10.1002/cphc.201402275
Google Scholar
[10]
H. Zhang, H. Bao, X. Zhong, Highly efficient, stable and reproducible CdSe-sensitized solar cells using copper sulfide as counter electrodes, J. Mater. Chem. A. 3 (2015) 6557–6564.
DOI: 10.1039/c5ta00068h
Google Scholar
[11]
Y. Chen, X. Zhang, Q. Tao, W. Fu, H. Yang, S. Su, Y. Mu, L. Zhou, M. Li, High catalytic activity of a PbS counter electrode prepared via chemical bath deposition for quantum dots-sensitized solar cells, RSC Adv. 5 (2015) 1835–1840.
DOI: 10.1039/c4ra08076a
Google Scholar
[12]
H. Geng, L. Zhu, W. Li, H. Liu, L. Quan, F. Xi, X. Su, FeS/nickel foam as stable and efficient counter electrode material for quantum dot sensitized solar cells, J. Power Sources. 281 (2015) 204–210.
DOI: 10.1016/j.jpowsour.2015.01.182
Google Scholar
[13]
H.J. Kim, T. Bin Yeo, S.K. Kim, S.S. Rao, A.D. Savariraj, K. Prabakar, C.V.V.M. Gopi, Optimal-temperature-based highly efficient NiS counter electrode for quantum-dot-sensitized solar cells, Eur. J. Inorg. Chem. 2014 (2014) 4281–4286.
DOI: 10.1002/ejic.201402026
Google Scholar
[14]
H. Salaramoli, E. Maleki, Z. Shariatinia, M. Ranjbar, CdS/CdSe quantum dots co-sensitized solar cells with Cu2S counter electrode prepared by SILAR, spray pyrolysis and Zn–Cu alloy methods, J. Photochem. Photobiol. A Chem. 271 (2013) 56–64.
DOI: 10.1016/j.jphotochem.2013.08.006
Google Scholar
[15]
M.H. Yeh, C.P. Lee, C.Y. Chou, L.Y. Lin, H.Y. Wei, C.W. Chu, R. Vittal, K.C. Ho, Conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte, Electrochim. Acta. 57 (2011) 277–284.
DOI: 10.1016/j.electacta.2011.03.097
Google Scholar
[16]
S. Abdulalmohsin, J. Armstrong, J.B. Cui, CdS nanocrystal-sensitized solar cells with polyaniline as counter electrode, J. Renew. Sustain. Energy. 4 (2012) 43108.
DOI: 10.1063/1.4737133
Google Scholar
[17]
J.H. Zeng, D. Chen, Y.F. Wang, B. Bin Jin, Graphite Powder Film-Supported Cu2S Counter Electrodes for Quantum Dot Sensitized Solar Cells, J. Mater. Chem. C. 3 (2015) 12140–12148.
DOI: 10.1039/c5tc02101d
Google Scholar
[18]
A.B. Suriani, M.D. Nurhafizah, A. Mohamed, M.H. Mamat, M.F. Malek, M.K. Ahmad, A. Pandikumar, N.M. Huang, Enhanced photovoltaic performance using reduced graphene oxide assisted by triple-tail surfactant as an efficient and low-cost counter electrode for dye-sensitized solar cells, Optik (Stuttg). 139 (2017) 291–298.
DOI: 10.1016/j.ijleo.2017.04.025
Google Scholar
[19]
A. Hessein, A.A. El-moneim, Developing Cost Effective Graphene Conductive Coating and its Application as Counter Electrode for CdS Quantum Dot Sensitized Solar Cell, Proc. World Congr. New Technol. (NewTech 2015). (2015) 307–1.
DOI: 10.4028/www.scientific.net/kem.786.400
Google Scholar
[20]
A. Hessein, F. Wang, H. Masai, K. Matsuda, A.A. El-Moneim, Improving the stability of CdS quantum dot sensitized solar cell using highly efficient and porous CuS counter electrode, J. Renew. Sustain. Energy. 9 (2017) 23504.
DOI: 10.1063/1.4978346
Google Scholar
[21]
A. Hessein, F. Wang, H. Masai, K. Matsuda, A.A. El-moneim, One-step fabrication of copper sulfide nanoparticles decorated on graphene sheets as highly stable and efficient counter electrode for CdS-sensitized solar cells, 55 (2016) 1–8.
DOI: 10.7567/jjap.55.112301
Google Scholar
[22]
C.S. Kim, S.H. Choi, J.H. Bang, New insight into copper sulfide electrocatalysts for quantum dot-sensitized solar cells: Composition-dependent electrocatalytic activity and stability, ACS Appl. Mater. Interfaces. 6 (2014) 22078–22087.
DOI: 10.1021/am505473d
Google Scholar
[23]
I.R.C. Rose, A.J. Rajendran, Exploring the effect of morphology of Ni and Co doped cadmium selenide nanoparticles as counter electrodes in dye-sensitized solar cell, Optik (Stuttg). 155 (2018) 63–73.
DOI: 10.1016/j.ijleo.2017.10.148
Google Scholar
[24]
M. Ye, X. Wen, N. Zhang, W. Guo, X. Liu, C. Lin, In situ growth of CuS and Cu1.8S nanosheet arrays as efficient counter electrodes for quantum dot-sensitized solar cells, J. Mater. Chem. A. 3 (2015) 9595–9600.
DOI: 10.1039/c5ta00390c
Google Scholar