Effect of Electrodes Material on the Performance of Batch Reactor Using Plasma Enhanced Technique for Wastewater Treatment

Article Preview

Abstract:

The plasma degradation process of Eosin yellow aqueous solution utilizing AC corona discharge generated above liquid with a type of pin to plate by utilizing multiple needles electrodesis investigated the influence of electrodes material and effect of ferrous sulfate on decoloration and the kinetics of process are discussed. The AC corona discharge plasma was generated in the air gap between tip of needles and the water surface. The experimental results indicate that the decoloration rate increases with using stainless steel electrodes and with increasing the concentration of FeSO4. When dye concentration is 10 mg/L with pH of 3, the air gaps were 0.85 cm and the number of pins were 30, the decoloration rate went up to 97% in 60 min.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

409-417

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jiang, B. et al. Degradation of organic dye by pulsed discharge non-thermal plasma technology assisted with modified activated carbon fibers,, Chem. Eng. J. 215–216,p.969–978 (2013).

DOI: 10.1016/j.cej.2012.11.046

Google Scholar

[2] Donnaperna, L. et al. Comparison of adsorption of Remazol Black B and Acidol Red on microporous activated carbon felt,, J. Colloid Interface Sci, vol. 339, p.275–284 (2009).

DOI: 10.1016/j.jcis.2009.07.057

Google Scholar

[3] Zhang, S., Shao, T., Kose, H. S. & Tanju, K. Adsorption of aromatic compounds by carbonaceous adsorbents: A comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes,, Environ. Sci. Technol, vol.44, p.6377–6383 (2010).

DOI: 10.1021/es100874y

Google Scholar

[4] Kositzi, M., Antoniadis, A., Poulios, I., Kiridis, I. & Malato, S. Solar photocatalytic treatment of simulated dyestuff effluents,, Sol. Energy, vol. 77, p.591–600 (2004).

DOI: 10.1016/j.solener.2004.04.018

Google Scholar

[5] Lucas, M. S. & Peres, J. A. Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation,, Dye. Pigment. 71, p.236–244 (2006).

DOI: 10.1016/j.dyepig.2005.07.007

Google Scholar

[6] Pérez, M., Torrades, F., Domènech, X. & Peral, J. Fenton and photo-Fenton oxidation of textile effluents,, Water Res. vol. 36, p.2703–2710 (2002).

DOI: 10.1016/s0043-1354(01)00506-1

Google Scholar

[7] Xie, Y., Chen, F., He, J., Zhao, J. & Wang, H. Photoassisted degradation of dyes in the presence of Fe 3 + and H 2 O 2 under visible irradiation,, vol. 136, p.235–240 (2000).

DOI: 10.1016/s1010-6030(00)00341-5

Google Scholar

[8] Kaushik, P. & Malik, A. Fungal dye decolourization: Recent advances and future potential,, Environ. Int, vol. 35, p.127–141 (2009).

DOI: 10.1016/j.envint.2008.05.010

Google Scholar

[9] Koprivanac, N., Kušić, H., Vujević, D., Peternel, I. & Locke, B. R. Influence of iron on degradation of organic dyes in corona,, J. Hazard. Mater, vol.117, p.113–119 (2005).

DOI: 10.1016/j.jhazmat.2004.03.023

Google Scholar

[10] Nogueira, R. F. P., Silva, M. R. A. & Trovó, A. G. Influence of the iron source on the solar photo-Fenton degradation of different classes of organic compound,, Sol. Energy, vol.79, p.384–392 (2005).

DOI: 10.1016/j.solener.2005.02.019

Google Scholar

[11] Foster, J. E. Plasma-based water purification: Challenges and prospects for the future,, Phys. Plasmas, vol.24, (2017).

Google Scholar

[12] Banaschik, R., Jablonowski, H., Bednarski, P. J. & Kolb, J. F. Degradation and intermediates of diclofenac as instructive example for decomposition of recalcitrant pharmaceuticals by hydroxyl radicals generated with pulsed corona plasma in water,, J. Hazard. Mater, vol. 342, p.651–660 (2018).

DOI: 10.1016/j.jhazmat.2017.08.058

Google Scholar

[13] Lukes, P. & Locke, B. R. Degradation of substituted phenols in a hybrid gas-liquid electrical discharge reactor,, Ind. Eng. Chem. Res, vol. 44, p.2921–2930 (2005).

DOI: 10.1021/ie0491342

Google Scholar

[14] Lukes, P., Dolezalova, E., Sisrova, I. & Clupek, M. Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: Evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O 2 and HNO2,, Plasma Sources Sci. Technol, vol. 23, (2014).

DOI: 10.1088/0963-0252/23/1/015019

Google Scholar

[15] Sahni, M. & Locke, B. R. Quantification of Hydroxyl Radicals Produced in Aqueous Phase Pulsed Electrical Discharge Reactors,,PDF. Ind. Eng. Chem. Res, vol. 45, p.5819–5825 (2006).

DOI: 10.1021/ie0601504

Google Scholar

[16] Hijosa-Valsero, M., Molina, R., Schikora, H., Müller, M. & Bayona, J. M. Removal of priority pollutants from water by means of dielectric barrier discharge atmospheric plasma,, J. Hazard. Mater, vol. 262, p.664–673 (2013).

DOI: 10.1016/j.jhazmat.2013.09.022

Google Scholar

[17] Magureanu, M. et al. Degradation of antibiotics in water by non-thermal plasma treatment,, Water Res, vol. 45, p.3407–3416 (2011).

DOI: 10.1016/j.watres.2011.03.057

Google Scholar

[18] Locke, B. R. & Thagard, S. M. Analysis and review of chemical reactions and transport processes in pulsed electrical discharge plasma formed directly in liquid water,, Plasma Chem. Plasma Process, vol. 32, p.875–917 (2012).

DOI: 10.1007/s11090-012-9403-y

Google Scholar

[19] Gerrity, D., Stanford, B. D., Trenholm, R. A. & Snyder, S. A. An evaluation of a pilot-scale nonthermal plasma advanced oxidation process for trace organic compound degradation,, Water Res, vol. 44, p.493–504 (2010).

DOI: 10.1016/j.watres.2009.09.029

Google Scholar

[20] Panorel, I., Preis, S., Kornev, I., Hatakka, H. & Louhi-Kultanen, M. Oxidation of aqueous pharmaceuticals by pulsed corona discharge,, Environ. Technol, vol. 34, p.923–930 (2013).

DOI: 10.1080/09593330.2012.722691

Google Scholar

[21] Singh, R. K., Philip, L. & Ramanujam, S. Removal of 2,4-dichlorophenoxyacetic acid in aqueous solution by pulsed corona discharge treatment: Effect of different water constituents, degradation pathway and toxicity assay,, Chemosphere, vol. 184, p.207–214 (2017).

DOI: 10.1016/j.chemosphere.2017.05.134

Google Scholar

[22] K.R. Trethewey and J. Chamberjain. Corrosion for students of science and engineering, Longman Scientific & Technical, Essex, (U.K), (1988).

Google Scholar

[23] R.Narayan. An introduction to metallic corrosion and its prevention,, Oxford & IBH publishing Co,New Delhi, (1983).

Google Scholar

[24] Dojčinović, B. P. et al. Decolorization of reactive textile dyes using water falling film dielectric barrier discharge,, J. Hazard. Mater, vol. 192, p.763–771 (2011).

DOI: 10.1016/j.jhazmat.2011.05.086

Google Scholar

[25] Núñez, L., García-Hortal, J. A. & Torrades, F.Study of kinetic parameters related to the decolourization and mineralization of reactive dyes from textile dyeing using Fenton and photo-Fenton processes,, Dye. Pigment, vol. 75, p.647–652 (2007).

DOI: 10.1016/j.dyepig.2006.07.014

Google Scholar

[26] Chen, Y. S., Zhang, X. S., Dai, Y. C. & Yuan, W. K. Pulsed high-voltage discharge plasma for degradation of phenol in aqueous solution,, Sep. Purif. Technol, vol. 34, p.5–12 (2004).

DOI: 10.1016/s1383-5866(03)00169-2

Google Scholar

[27] Muruganandham, M. & Swaminathan, M. Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO2-UV process,, Dye. Pigment, vol. 68, p.133–142 (2006).

DOI: 10.1016/j.dyepig.2005.01.004

Google Scholar

[28] Liang, C., Wang, Z. S. & Bruell, C. J. Influence of pH on persulfate oxidation of TCE at ambient temperatures,, Chemosphere 66, 106–113 (2007).

DOI: 10.1016/j.chemosphere.2006.05.026

Google Scholar

[29] Minisci, F., Citterio, A. & Giordano, C. Electron-Transfer Processes: Peroxydisulfate, a Useful and Versatile Reagent in Organic Chemistry,, Acc. Chem. Res, vol. 16, p.27–32 (1983).

DOI: 10.1021/ar00085a005

Google Scholar

[30] Peyton, G. R. The free-radical chemistry of persulfate-based total organic carbon analyzers,, Mar. Chem, vol. 41, p.91–103 (1993).

DOI: 10.1016/0304-4203(93)90108-z

Google Scholar

[31] Manoj Kumar Reddy, P., Rama Raju, B., Karuppiah, J., Linga Reddy, E. & Subrahmanyam, C. Degradation and mineralization of methylene blue by dielectric barrier discharge non-thermal plasma reactor,, Chem. Eng. J, vol. 217, p.41–47 (2013).

DOI: 10.1016/j.cej.2012.11.116

Google Scholar

[32] Sugiarto, A. T., Ito, S., Ohshima, T., Sato, M. & Skalny, J. D. Oxidative decoloration of dyes by pulsed discharge plasma in water,, J. Electrostat, vol. 58, p.135–145 (2003).

DOI: 10.1016/s0304-3886(02)00203-6

Google Scholar

[33] Locke B R, Sato M, SunkaP, H. M. R. and C. J. S. Electrohydraulic discharge and nonthermalplasma, for water treatment,, Indust. Eng. Chem. Res, vol. 45, p.882–905 (2006).

Google Scholar

[34] Gao, J. et al. Plasma degradation of dyes in water with contact glow discharge electrolysis,, Water Res vol. 37, p.267–272 (2003).

DOI: 10.1016/s0043-1354(02)00273-7

Google Scholar

[35] Wang, Z., Xu, D., Chen, Y., Hao, C. & Zhang, X. Plasma decoloration of dye using dielectric barrier discharges with earthed spraying water electrodes,, J. Electrostat, vol. 66, p.476–481, (2008).

DOI: 10.1016/j.elstat.2008.03.009

Google Scholar