A Study on the Compressive Strength Properties and Quality Control of Lightweight Foamed Magnesia Composite Using Super Absorbent Polymers as Base Material for Biological Panels

Article Preview

Abstract:

In this paper, the compressive strength quality characteristics of lightweight formedmagnesia composite using super absorbent polymer as basic material for biological panels wereevaluated. The experimental parameters were evaluated with respect to the compressive strength ofthe mortar according to the water binder ratio (W/B), the volume ratio of fine aggregate (Vs/Vm), theamount of foaming agent (FA) and the amount of super absorbent polymer (SAP). Statistical analysiswas performed on the compressive strength obtained through the experiment and the influencecoefficient on the compressive strength quality was obtained. The compressive strength qualityprediction model equation of the magnesia composite is proposed through the obtained influencecoefficient. The proposed model equation shows that the experimental and predicted values are over80%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

144-149

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Sandra, M. De Willem, S. Ignacio, A. Antonio, S. Kathy, B. Nico, B. De Nele, Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth, J. Sci. Total Envir. 481 (2014) 232-241.

DOI: 10.1016/j.scitotenv.2014.02.059

Google Scholar

[2] K. Perini, M. Ottelé, E. Haas, R. Raiteri., Greening the Building Envelope, Façade Greening and Living Wall Systems, J. Ecol. 1(01) (2011) 1–8.

DOI: 10.4236/oje.2011.11001

Google Scholar

[3] M. M. Davis, S. Hirmer, The potential for vertical gardens as evaporativecoolers: an adaptation of the Penman Monteith Equation,, Build. Environ. 92 (2015) 135–141.

DOI: 10.1016/j.buildenv.2015.03.033

Google Scholar

[4] A. Eggert, N. Häubner, S. Klausch, U. Karsten, R. Schumann, Quantification of Algal Biofilms Colonising Building Materials: Chlorophyll a Measured by PAM-Fluorometry as a Biomass Parameter, J. Biofoul. 22(02) (2006) 79–90.

DOI: 10.1080/08927010600579090

Google Scholar

[5] G. Pérez, J. Coma, I. Martorell, L. F. Cabeza, Vertical Greenery Systems (VGS) forenergy saving in buildings: a review, Renew. Sustain. Energy Rev. 39 (2014) 139–165.

DOI: 10.1016/j.rser.2014.07.055

Google Scholar

[6] S. Manso, W. D. Muynck, I. Segura, A. Aguado, K. Steppe, N. Boon, N. D. Belie, Bioreceptivity Evaluation of Cementitious Materials Designed to Stimulate Biological Growth, J. Sci. Total Envir. 481 (2014) 232-241.

DOI: 10.1016/j.scitotenv.2014.02.059

Google Scholar

[7] H. Ma, B. Xu, Potential to designmagnesium potassiumphosphate cement paste based on an optimal magnesia-to-phosphate ratio, J. Mater. Des. 118 (2017) 81-88.

DOI: 10.1016/j.matdes.2017.01.012

Google Scholar

[8] S. H. Kang, J. H. Moon, S. G. Hong, Effect of Internal Curing by Super-Absorbent Polymer (SAP) on Hydration, Autogenous Shrinkage, Durability and Mechanical Characteristics of Ultra-High Performance Concrete (UHPC), J. Korea Concr. Inst. 28 (2016).

DOI: 10.4334/jkci.2016.28.3.317

Google Scholar

[9] O. Guillitte, R. Dreesen, Laboratory chamber studies and petrographical analysis as bioreceptivity assessment tolls of building materials. Sci. Total Environ. 167 (1995) 365–374.

DOI: 10.1016/0048-9697(95)04596-s

Google Scholar

[10] Y. W. Choi, J. H. Lee, B. K. Choi, S. R. Oh, Workability and Compressive Strength Properties of Magnesia-Potassium Phosphate Composites for Biological Panel, J. Korea Acad. Ind. Cooperat. Soc. 18(7) (2017) 357-364.

Google Scholar