Efficiency Enhancement by Optimizing Selenization Time for Co-Sputtered Cu2ZnSn(S,Se)4 Thin Film Solar Cells

Article Preview

Abstract:

To reveal the effects of annealing condition on CZTSSe thin film solar cells, co-sputtering and subsequent selenization were used to prepare CZTSSe thin films. Structural, morphological and optical properties of CZTSSe thin films were investigated. CZTSSe thin films with various Se/(S+Se) ratio ranging from 0.69-0.78 were obtained. Representative peaks corresponding to CZTSSe in XRD and Raman results showed a slight shift to lower diffraction angle and wavenumbers. Selenization time significantly influenced the morphologies of CZTSSe films and the gradual grown up grain size was observed. VOC deficit values down to 839 mV was achieved for the best cell. CZTSSe solar cell with the selenization time of 10 min showed a best conversion efficiency of 5.32%, which presented a 50% enhancement comparing to the solar cells with insufficient and over-selenized absorbers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-39

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Li, D. Wang, X. Li, et al.: Advanced Science Vol. 5 (2018), pp.1-21.

Google Scholar

[2] T. Schnabel, M. Löw, E. Ahlswede: Sol. Energ. Mat. Sol. C. Vol. 117 (2013), p.324.

Google Scholar

[3] D. B. Mitzi, O. Gunawan, T. K. Todorov, et al.: Sol. Energ. Mat. Sol. C. Vol. 95 (2011), p.1421.

Google Scholar

[4] K. W. Sun, F. Y. Liu, C. Yan, et al.: Sol. Energ. Mat. Sol. C. Vol.157 (2016), p.565.

Google Scholar

[5] H. Katagiri, K. Jimbo, W. S. Maw, et al.: Thin Solid Films Vol. 517 (2009), p.2445.

Google Scholar

[6] D. Park, D. Nam, S. Jung, et al.: Thin Solid Films Vol. 519 (2011), p.7386.

Google Scholar

[7] S. Okano, S. Takeshita, T. Isobe: Mater. Lett. Vol. 145 (2015), p.79.

Google Scholar

[8] A. C. Lokhande, R. B. V. Chalapathy, J. S. Janga, et al.: Sol. Energ. Mat. Sol. C. Vol. 161 (2017), p.355.

Google Scholar

[9] O. P. Singh, N. Vijayan, K. N. Sood, et al.: J. Alloy. Compd. Vol. 648 (2015), p.595.

Google Scholar

[10] S. Ranjbar, M. R. R. Menon, P. A. Fernandes, et al.: Thin Solid Films Vol. 582 (2015), p.188.

Google Scholar

[11] Z. Tang, K. Kosaka, H. Uegaki: Physica Status Solidi. Vol. 212 (2015), p.2289.

Google Scholar

[12] Y. Lai, L. Zhao, C. Gao: Materials Letters Vol. 182 (2016), p.336.

Google Scholar

[13] W. C. Chen, C. Y. Chen, V. Tunuguntla, et al.: Nano Energy Vol. 30 (2016), p.762.

Google Scholar

[14] S. Siebentritt, S. Schorr: Prog. Photovolt: Res. Appl. Vol. 20 (2012), p.512.

Google Scholar