[1]
D. Weichert, A. Ponter, A historical view on shakedown theory, in: E. Stein (Ed.) The History of Theoretical, Material and Computational Mechanics-Mathematics Meets Mechanics and Engineering, Springer, 2014, pp.169-193.
DOI: 10.1007/978-3-642-39905-3_11
Google Scholar
[2]
J.A. König, Shakedown of elastic-plastic structures, Elsevier, Amsterdam, (1987).
Google Scholar
[3]
A. Makrodimopoulos, C.M. Martin, Lower bound limit analysis of cohesive-frictional materials using second-order cone programming, Int J Numer Meth Eng, 66 (2006) 604-634.
DOI: 10.1002/nme.1567
Google Scholar
[4]
X.F. Zhang, Y.H. Liu, Y.N. Zhao, Z.Z. Cen, Lower bound limit analysis by the symmetric Galerkin boundary element method and the Complex method, Comput Method Appl M, 191 (2002) 1967-1982.
DOI: 10.1016/s0045-7825(01)00363-2
Google Scholar
[5]
Y. Zhang, An iteration algorithm for kinematic shakedown analysis, Comput Method Appl M, 127 (1995) 217-226.
Google Scholar
[6]
Y.H. Liu, Z.Z. Cen, B.Y. Xu, A Numerical-Method for Plastic Limit Analysis of 3-D Structures, Int J Solids Struct, 32 (1995) 1645-1658.
DOI: 10.1016/0020-7683(94)00230-t
Google Scholar
[7]
N. Zouain, L. Borges, J.L. Silveira, An algorithm for shakedown analysis with nonlinear yield functions, Comput Method Appl M, 191 (2002) 2463-2481.
DOI: 10.1016/s0045-7825(01)00374-7
Google Scholar
[8]
G. Garcea, L. Leonetti, A unified mathematical programming formulation of strain driven and interior point algorithms for shakedown and limit analysis, Int J Numer Meth Eng, 88 (2011) 1085-1111.
DOI: 10.1002/nme.3188
Google Scholar
[9]
J.W. Simon, D. Weichert, Numerical lower bound shakedown analysis of engineering structures, Comput Method Appl M, 200 (2011) 2828-2839.
DOI: 10.1016/j.cma.2011.05.006
Google Scholar
[10]
D. Mackenzie, J. Shi, J.T. Boyle, Finite-Element Modeling for Limit Analysis by the Elastic Compensation Method, Comput Struct, 51 (1994) 403-410.
DOI: 10.1016/0045-7949(94)90325-5
Google Scholar
[11]
A.R.S. Ponter, K.F. Carter, Shakedown state simulation techniques based on linear elastic solutions, Comput Method Appl M, 140 (1997) 259-279.
DOI: 10.1016/s0045-7825(96)01105-x
Google Scholar
[12]
H.F. Chen, A.R.S. Ponter, Shakedown and limit analyses for 3-D structures using the linear matching method, International Journal of Pressure Vessels and Piping, 78 (2001) 443-451.
DOI: 10.1016/s0308-0161(01)00052-7
Google Scholar
[13]
H.F. Chen, A.R.S. Ponter, A method for the evaluation of a ratchet limit and the amplitude of plastic strain for bodies subjected to cyclic loading, Eur J Mech a-Solid, 20 (2001) 555-571.
DOI: 10.1016/s0997-7538(01)01162-7
Google Scholar
[14]
M. Lytwyn, H.F. Chen, A.R.S. Ponter, A generalised method for ratchet analysis of structures undergoing arbitrary thermo-mechanical load histories, Int J Numer Meth Eng, 104 (2015) 104-124.
DOI: 10.1002/nme.4924
Google Scholar
[15]
K.V. Spiliopoulos, K.D. Panagiotou, A Residual Stress Decomposition based Method for the Shakedown analysis of structures, Comput Method Appl M, 276 (2014) 410-430.
DOI: 10.1016/j.cma.2014.03.019
Google Scholar
[16]
K.V. Spiliopoulos, K.D. Panagiotou, An enhanced numerical procedure for the shakedown analysis in multidimensional loading domains, Comput Struct, 193 (2017) 155-171.
DOI: 10.1016/j.compstruc.2017.08.008
Google Scholar
[17]
H. Peng, Y. Liu, H. Chen, J. Shen, Shakedown analysis of engineering structures under multiple variable mechanical and thermal loads using the stress compensation method, Int J Mech Sci, 140 (2018) 361-375.
DOI: 10.1016/j.ijmecsci.2018.03.020
Google Scholar
[18]
H. Peng, Y. Liu, H. Chen, A numerical formulation and algorithm for limit and shakedown analysis of large-scale elastoplastic structures, Comput Mech, (2018).
DOI: 10.1007/s00466-018-1581-x
Google Scholar
[19]
S. Chen, Y. Liu, Z. Cen, Lower bound shakedown analysis by using the element free Galerkin method and non-linear programming, Comput Method Appl M, 197 (2008) 3911-3921.
DOI: 10.1016/j.cma.2008.03.009
Google Scholar
[20]
H. Nguyen-Xuan, T. Rabczuk, T. Nguyen-Thoi, T.N. Tran, N. Nguyen-Thanh, Computation of limit and shakedown loads using a node-based smoothed finite element method, Int J Numer Meth Eng, 90 (2012) 287-310.
DOI: 10.1002/nme.3317
Google Scholar
[21]
K.D. Panagiotou, Limit state numerical procedures for cyclically loaded elastoplastic structures. PhD thesis, National Technical University of Athens, Greece, (2015).
DOI: 10.12681/eadd/36539
Google Scholar
[22]
P.T. Pham, Upper Bound Limit and Shakedown Analysis of Elastic-Plastic Bounded Linearly Kinematic Hardening Structures. PhD thesis, RWTH-Aachen, Germany, (2011).
Google Scholar