Stress Compensation Method for Structural Shakedown Analysis

Article Preview

Abstract:

This paper presents a novel direct method called the stress compensation method (SCM) for structural shakedown analysis. Being different from the popular direct method of mathematical programming, the SCM just carries out some iterative calculations. Making full use of static shakedown theorem, the residual stress field is constructed via solving the modified global equilibrium equations. An effective and robust iteration control technique is adopted to generate a sequence of decreasing load multipliers. The numerical procedure is incorporated into the ABAQUS platform via some user subroutines. The shakedown problems for a cantilever beam, a symmetric continuous beam and a practical shell with nozzles are effectively solved and analyzed. These results are compared to the analytical solutions and those found in literatures. Both the incremental collapse mechanism and the alternating plasticity mechanism are revealed to determine the shakedown boundaries. Numerical examples show that the SCM is of numerical stability, good accuracy, high computational efficiency, and can effectively perform shakedown analysis of large-scale practical engineering structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

169-181

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Weichert, A. Ponter, A historical view on shakedown theory, in: E. Stein (Ed.) The History of Theoretical, Material and Computational Mechanics-Mathematics Meets Mechanics and Engineering, Springer, 2014, pp.169-193.

DOI: 10.1007/978-3-642-39905-3_11

Google Scholar

[2] J.A. König, Shakedown of elastic-plastic structures, Elsevier, Amsterdam, (1987).

Google Scholar

[3] A. Makrodimopoulos, C.M. Martin, Lower bound limit analysis of cohesive-frictional materials using second-order cone programming, Int J Numer Meth Eng, 66 (2006) 604-634.

DOI: 10.1002/nme.1567

Google Scholar

[4] X.F. Zhang, Y.H. Liu, Y.N. Zhao, Z.Z. Cen, Lower bound limit analysis by the symmetric Galerkin boundary element method and the Complex method, Comput Method Appl M, 191 (2002) 1967-1982.

DOI: 10.1016/s0045-7825(01)00363-2

Google Scholar

[5] Y. Zhang, An iteration algorithm for kinematic shakedown analysis, Comput Method Appl M, 127 (1995) 217-226.

Google Scholar

[6] Y.H. Liu, Z.Z. Cen, B.Y. Xu, A Numerical-Method for Plastic Limit Analysis of 3-D Structures, Int J Solids Struct, 32 (1995) 1645-1658.

DOI: 10.1016/0020-7683(94)00230-t

Google Scholar

[7] N. Zouain, L. Borges, J.L. Silveira, An algorithm for shakedown analysis with nonlinear yield functions, Comput Method Appl M, 191 (2002) 2463-2481.

DOI: 10.1016/s0045-7825(01)00374-7

Google Scholar

[8] G. Garcea, L. Leonetti, A unified mathematical programming formulation of strain driven and interior point algorithms for shakedown and limit analysis, Int J Numer Meth Eng, 88 (2011) 1085-1111.

DOI: 10.1002/nme.3188

Google Scholar

[9] J.W. Simon, D. Weichert, Numerical lower bound shakedown analysis of engineering structures, Comput Method Appl M, 200 (2011) 2828-2839.

DOI: 10.1016/j.cma.2011.05.006

Google Scholar

[10] D. Mackenzie, J. Shi, J.T. Boyle, Finite-Element Modeling for Limit Analysis by the Elastic Compensation Method, Comput Struct, 51 (1994) 403-410.

DOI: 10.1016/0045-7949(94)90325-5

Google Scholar

[11] A.R.S. Ponter, K.F. Carter, Shakedown state simulation techniques based on linear elastic solutions, Comput Method Appl M, 140 (1997) 259-279.

DOI: 10.1016/s0045-7825(96)01105-x

Google Scholar

[12] H.F. Chen, A.R.S. Ponter, Shakedown and limit analyses for 3-D structures using the linear matching method, International Journal of Pressure Vessels and Piping, 78 (2001) 443-451.

DOI: 10.1016/s0308-0161(01)00052-7

Google Scholar

[13] H.F. Chen, A.R.S. Ponter, A method for the evaluation of a ratchet limit and the amplitude of plastic strain for bodies subjected to cyclic loading, Eur J Mech a-Solid, 20 (2001) 555-571.

DOI: 10.1016/s0997-7538(01)01162-7

Google Scholar

[14] M. Lytwyn, H.F. Chen, A.R.S. Ponter, A generalised method for ratchet analysis of structures undergoing arbitrary thermo-mechanical load histories, Int J Numer Meth Eng, 104 (2015) 104-124.

DOI: 10.1002/nme.4924

Google Scholar

[15] K.V. Spiliopoulos, K.D. Panagiotou, A Residual Stress Decomposition based Method for the Shakedown analysis of structures, Comput Method Appl M, 276 (2014) 410-430.

DOI: 10.1016/j.cma.2014.03.019

Google Scholar

[16] K.V. Spiliopoulos, K.D. Panagiotou, An enhanced numerical procedure for the shakedown analysis in multidimensional loading domains, Comput Struct, 193 (2017) 155-171.

DOI: 10.1016/j.compstruc.2017.08.008

Google Scholar

[17] H. Peng, Y. Liu, H. Chen, J. Shen, Shakedown analysis of engineering structures under multiple variable mechanical and thermal loads using the stress compensation method, Int J Mech Sci, 140 (2018) 361-375.

DOI: 10.1016/j.ijmecsci.2018.03.020

Google Scholar

[18] H. Peng, Y. Liu, H. Chen, A numerical formulation and algorithm for limit and shakedown analysis of large-scale elastoplastic structures, Comput Mech, (2018).

DOI: 10.1007/s00466-018-1581-x

Google Scholar

[19] S. Chen, Y. Liu, Z. Cen, Lower bound shakedown analysis by using the element free Galerkin method and non-linear programming, Comput Method Appl M, 197 (2008) 3911-3921.

DOI: 10.1016/j.cma.2008.03.009

Google Scholar

[20] H. Nguyen-Xuan, T. Rabczuk, T. Nguyen-Thoi, T.N. Tran, N. Nguyen-Thanh, Computation of limit and shakedown loads using a node-based smoothed finite element method, Int J Numer Meth Eng, 90 (2012) 287-310.

DOI: 10.1002/nme.3317

Google Scholar

[21] K.D. Panagiotou, Limit state numerical procedures for cyclically loaded elastoplastic structures. PhD thesis, National Technical University of Athens, Greece, (2015).

DOI: 10.12681/eadd/36539

Google Scholar

[22] P.T. Pham, Upper Bound Limit and Shakedown Analysis of Elastic-Plastic Bounded Linearly Kinematic Hardening Structures. PhD thesis, RWTH-Aachen, Germany, (2011).

Google Scholar